Altreonic .]
o Trustworthy Systems Engineering

By Sic: with GoedelWorks 3
Deep Sea

4 -n‘ 4 4%”“%\ M“’MNWMV MMM

First publication in
the Godel Series

SYSTEMS
ENGINEERING

al

Altreon

Trustworthy Systems Engineering with GoedelWorks 3
This publication is published under a

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

@080

Altreonic NV
Gemeentestraat 61A B1
B-3210 Linden

Belgium

www.altreonic.com
info. request (@) altreonic.com

September 2011
Last update - July 2015

© Altreonic NV
Contact: goedelseries @ altreonic.com

Altreonic NV From Deep Space To Deep Sea

http://altreonic.com
http://altreonic.com
http://creativecommons.org/licenses/b
http://creativecommons.org/licenses/b

PREFACE

This booklet is the first of the Godel* Series, with the subtitle "Systems Engineering for Smarties". The aim
of this series is to explain in an accessible way some important aspects of trustworthy systems engineering
with each booklet covering a specific domain.

The first publication was entitled "Trustworthy Systems Engineering with GoedelWorks" and explains the
high level framework Altreonic applies to the domain of systems engineering. It discusses a generic model
that applies to any process and project development. It explains the 16 necessary but sufficient concepts,
further elaborated by defining a standard template structure for a Work Package. The version you are
reading now is an update reflecting the metamodel used in version 3 of the GoedelWorks portal. This
version is based on a more extended metamodel. In particular it provides a generic template metamodel for
the internal structure of a Works Package.

Validation of the approach was achieved in several ways. The model was successfully applied to the import
of the project flow of the ASIL (Automotive Safety Integrity Level) project whereby a common process was
developed based on the IEC-61508, IEC-62061, 1SO-DIS-26262, 1SO-13849, 1SO-DIS-25119 and 1SO-15998
safety standards covering the automotive on-highway, off-highway and machinery domain. It was also used
for in-house engineering projects such as the Qualification Package for OpenComRTOS Designer and for the
development of a scalable e-vehicle.

Through these Projects, the GoedelWorks metamodel has undergone further refinements and
improvements, bringing it closer to the daily practice of a rigorous Engineering Process. In parallel, Altreonic
has developed a novel criterion called ARRL (Assured Reliability and Resilience Level) providing a first
guideline on how components or subsystems can be reused, be it in a product family or across different
application domains while taken failure mode into account. The ideas behind ARRL reflect very well the
philosophy behind trustworthy systems engineering and therefore we dedicated a summarising chapter to it
even though ARRL is the subject of another booklet.

The name of Godel (as in GoedelWorks) was chosen because Kurt Godel's theorem has fundamentally
altered the way mathematics and logic were approached, now almost 80 years ago. What Kurt Gédel and
other great thinkers such as Heisenberg, Einstein and Wittgenstein really did was to create clarity in
something that looked very complex. And while it required a lot of hard thinking on their side, it resulted in
very concise and elegant theorems or formulae. One can even say that any domain or subject that still looks
complex today, is really a problem domain that is not yet fully understood. We hope to achieve something
similar, be it less revolutionary, for the systems engineering domain and it's always good to have intellectual
beacons to provide guidance.

The Godel Series publications are downloadable from our website. Other titles in the series cover topics of
Real-Time programming, steering control and on ARRL. Copying of content is permitted provided the source
is referenced. As the booklets will be updated based on feedback from our readers, feel free to contact us at
goedelseries @ altreonic.com.

Eric Verhulst, CEO/CTO Altreonic NV

*. pronunciation ['kost 'gg:dal] (listen)

https://en.wikipedia.org/wiki/Help:IPA_for_English
https://upload.wikimedia.org/wikipedia/commons/f/fd/Kurt_g%C3%B6del.ogg

Trustworthy Systems Engineering with GoedelWorks 3

PREFACE

1. Trustworthy Systems Engineering
1.1. Whatis a system?
1.2. What is a Trustworthy system?
1.3. What is Systems Engineering?
1.4. The subdomains of Systems Engineering
1.5. What is Resilience Engineering?

2. Unified Systems Engineering
2.1. AProcess as a System
2.2. Unified Semantics
2.3. Interacting Entities Semantics
2.4. Aunifying model for Systems Engineering
2.5. Systems Engineering: different views that need to be combined
2.6. Aninformal view on Systems Engineering with GoedelWorks
2.6.1. Real engineering is Process of iterations
2.6.2. Traceability and configuration management

3. Engineering real systems that can fail
3.1. ARRL: the Assured Reliability and Resilience Level criterion
3.2. Overview of existing criteria in the domain of trustworthiness
3.2.1. Safety Integrity Level
3.2.2. Quality of Service Levels
3.3. The ARRL criterion
3.4. s this sufficient for antifragility?
3.4.1. Antifragility assumptions
3.4.2. Some industries are antifragile by design
3.4.3. Do we need an ARRL-6 and ARRL-7 level?
3.5. Automated traffic as an antifragile ARRL-7 system
3.6. Isthere an ARRL-8 level?
3.7. Conclusions

4. The systems Grammar of GoedelWorks
4.1. Systems Grammar
4.2. Terminology and its conventions in GoedelWorks
4.3. Process Steps, instantiated as Work Packages in a concrete Project
4.4. Inthe end, any project is iterative
4.5. Systems Engineering as a collection of Views

5. Description of the GoedelWorks Environment

Altreonic NV From Deep Space To Deep Sea

o o o W

9
11
13
15
15
16
18
19
20
21
23
24
25
25
25
25
26
27
28
28
29
30
30
31
32
33
33
36
38
40
41
43

5.1.

5.2.

5.3.

5.3.1.
5.3.1.
5.4.

54.1.
54.2.
5.4.3.
5.4.4.
5.4.5.
5.4.6.
54.7.
5.4.8.
5.4.9.
5.5.

5.5.1.
5.5.2.
5.5.3.
5.5.4.
5.5.5.

Trustworthy Systems Engineering with GoedelWorks 3

Principles of operation

Organisational functions of a GoedelWorks portal
GoedelWorks Systems Grammar

Top level view

View from inside a Work Package

Top level View in a GoedelWorks portal
Navigation tree view

The entity pane view

Query capability

GANTT chart

Change Log

Version and configuration management in GoedelWorks
Productivity supporting features

Administration

Glossary

A project example

The OpenComRTOS Qualification project
Planning the Qualification Project

The Planning Activities

Design Activities

Some statistics

6. Safety standards awareness in GoedelWorks

6.1.
6.2.
6.3.
6.4.

Safety standards for embedded reprogrammable electronics
ASIL: A safety engineering process focused around 1SO-26262
Certification, qualification after validation

Organisation specific instances of GoedelWorks

7. References
8. ANNEXES

8.1.
8.2.

Entities supported in GoedelWorks 3
Entities defined in the ASIL Process

Acknowledgements

Altreonic NV

From Deep Space To Deep Sea

43
44
45
45
46
47
49
52
52
54
55
55
57
57
58
59
59
59
61
61
61
62
62
62
63
65
65
66
66
69
71

Trustworthy Systems Engineering with GoedelWorks 3

1. Trustworthy Systems Engineering

1.1. Whatis a system?

It might surprise you, but while the word "System" has its origins in the Greek philosophy, it is only in the
last 50 years, with the rapid advance of electronics and computers that the word System became a standard
technical term. The meaning is still the same, but what motivates the use of the word (vs. for example
“machine”) is the underlying complexity. Electronic Systems today can have thousands of components, each
component being a complex System in itself. A modern state of the art Processor for example has a few
billion of logical elements. Still, what we see on the outside is often only just a piece of plastic with some
tiny metal bumps underneath. Such a System might be a part in a larger System such as your laptop or your
car. Each of these larger Systems might again be just a component of a larger System. For example your
laptop is connected to the internet System and your car is part of a transportation System. In these two
examples, the smallest part might be just a few tens of nanometers large, the largest part is the world itself
with its dimensions that is about 10.000 billion times larger. Therefore, let's consider the following
definition:

A System is a layered and structured collection of subsystems, often called System components,

that together act as a whole and provide a specific functionality.

@ @ ® Runoff
Erosion

Maountams

Fossil
Fuels
(Petrodeun,
Coal, N Gas,

\quilers

Unlillcs1
Mining. Manu-
Logging ' factunng

Phosphate

[\ D
//'," | ‘ ‘

/ J \‘ Ommerce

J / Processing
/' Agri-
” i culture

D.R. Tilley, 1999

North Carolina '

The System of North Calorina (Carolina (Src: bttp:// www.enst.umd.edu)

This definition is still generic and fairly vague. In the following chapters we will make this definition more
concrete (when we look more into the details), but more abstract as well (when we try to find the common
properties for all Systems). Let's start by taking a look at some examples.

First of all, our natural environment is full of Systems. See for example the system of North Carolina in the
picture. Every living creature, every plant is a so-called biological System. All of these, including our own
human species, interact with each other somehow, in the System that we can call "life on earth". Also earth

Altreonic NV From Deep Space To Deep Sea

Trustworthy Systems Engineering with GoedelWorks 3

tides). Humans are also social beings and our civilisation is full of social, economic and political Systems.
Most of these have, more or less, spontaneously emerged and still evolve every day. While these natural
Systems are very complex and interesting to study, they will not be our focus, even if we can certainly apply
some of their mechanisms to the Systems that interest us. See for example ARRL-8 in the chapter at the end
of this booklet. There is even a term called "social engineering" but this is not what we have in mind. On the
contrary, this is maybe exactly what we want to avoid in real, trustworthy Systems Engineering Projects.

Driver Alertness Auto-Dimming Active
Night Vision Monitoring Mirror Cabin Noise
Suppression

Entertainment
System

Windshield Accident | Interior

Head-Up Battery

Management

3 Lighting Cabin
Wiper Costra Display meconier R Environment
Airbag Voice/Data Controls
Deployment Engine Instrument Communications Dedicated
Control Cluster | / Short-Range
Adaptive Front \ | . / Communications
Lighting \ Z Navigation

s — System
Adaptive Cruise AR T v
Control —— 5 \ —— Security System
. \/
Automatic ____— e Active Exhaust
Braking / Noise Suppression
Electric : Active Suspension
Power Steering \
Electronic Throttle . {| Antilock Hill-Hold
= Electronic
Transmission i
Control X v Stability Braking Control
3 Su on; 5 Active Remote Control Regenerative
Electronic tart/ o Vibration Kev'ess Seat Position . Braking
Valve Control Entry Control ; SR Tire
Timing Active System
Cylinder Blindspot Lane Departure Yaw Pressure
De-activation Detection Wamning Control Monitoring

The many sub systems of the car as a System

The Systems that interest us are the human-made ones. Often such a System needs to be considered
together with two other Systems. The first one is the environment in which the System will be used. The
second is the operator interacting with the System. An example of such a System is a car. These Systems are
often very complex and we could call them technological Systems. What distinguishes them from the
biological Systems is that they are the fruit of our human intelligence and not of millions of years of
evolution. What distinguishes them further is that these Systems often require the use of many other
Systems (called tools) to make them and the use of many components and many Resources. As such, such a
technological System has a long history if we trace the origins of every component. Each embodies decades,
sometimes centuries of human knowledge. And while these Systems are not as complex as the natural
ones, they are often the result of a concentrated effort to produce the System from just a few statements
that describe its mission ("We will go to the moon and return") in a relatively short period of time.

Altreonic NV From Deep Space To Deep Sea

Trustworthy Systems Engineering with GoedelWorks 3

1.2. What is a Trustworthy system?

The example given above is for the normal earthling perhaps
too far away from his daily occupation, but illustrates very well
the concept of Trustworthy Systems Engineering. The
technology was still in its early days, there weren't that many B8
computers yet, but a goal was defined to bring a man to the ¥]
moon and back to earth safely. This set a process in motion that \
would produce the Saturn-V rocket, the Apollo cabin and Lunar
Lander and it actually set 14 people on the moon and safely
returned them. One mission even showed that the System was
resilient enough to bring back astronauts when their Apollo life
support System was seriously damaged by an explosion. Even if
astronauts are clearly taking more risks than the average
person, at the end of the day, what it came down to was that
the risk was an accepted risk and no astronaut would have
volunteered to step into the Apollo cabin on top of the Saturn-V
rocket, if he wouldn't have had sufficient trust that he would
safely return. Therefore, space programs have been a great catalyser for developing the discipline of
Systems Engineering. Hence, it is with pleasure that we recently witnessed the landing of Philae, part of the
Rosetta mission, on a comet. As an engineering project it was simple yet very trustworthy in the context of
many unknown parameters of the mission. On board was the Virtuoso RTOS, a precursor to our
OpenComRTOS Designer. It made a small contribution to a large international team effort that after 10 years
and 500 million kilometers away gave us the first close-up pictures and soil sample analysis of a comet.

Apollo 13 safe return on earth

There are of course other domains where Systems engineering developed more than in other domains. The
aviation industry, the defence sector, the shipping industry, the medical sector, industrial manufacturing and
railway have always had a concern for safety, especially as accidents had shown that things could go wrong
and people could get killed. This has resulted in the emergence of safety standards. Table 1 lists the most
prominent safety standards.

Examples of Safety and Systems engineering standards

IEC-61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems

ISO-26262 Road vehicles -- Functional safety
DO-178B/C Software Considerations in Airborne Systems and Equipment Certification
DO-254 Design Assurance Guidance For Airborne Electronic Hardware

EN-50126 Railway applications - The Specification and demonstration of reliability, availability,
maintainability and safety

ECSS-E-ST-40C ESA - Space - Software Engineering

There are many more, dedicated to e.g. steel and concrete structures. Often these are more "normative"
rather than describing a Process.

The major concern in these safety standards is to avoid that a System can harm or kill people. The point of
view is one whereby the risk of this happening must be small enough and that the cause of this happening
is a malfunctioning of the System, either because some parts break, or because external events (like the
Titanic hitting an iceberg) cause this to happen. As explained in the previous chapter, any System is part of a
larger System and in particular the environment in which it is used. A well executed Systems Engineering
Process anticipates such failures and depending on their probability of occurrence, their severity and

Altreonic NV From Deep Space To Deep Sea

Trustworthy Systems Engineering with GoedelWorks 3

potential consequences takes measures to keep the consequences within acceptable limits. In the less
severe cases, a simple warning will be raised that repair is needed, but indicating that the System is still
functional. In more severe cases, part of the functionality will be lost and the remaining parts will try to
keep the System as functional as possible. In severe cases, a shutdown will be in order and all functionality
will be lost. What makes safety related Systems Engineering challenging is that there is a long dependency
chain, that the System might contain millions of parts, that many people will be involved and that many
steps have to be taken. The challenge is to make this Process predictable and “managed”.

There are however other classes of failure causes that also must be considered. In safety most of the
attention goes to physical causes. As our Systems, increasingly containing computing devices that are inter-
connected but also having connections to the outside world (a simple USB port is enough), are also
vulnerable to deliberately injected faults. This is often done in a way to avoid detection.

We call this a security breach because the integrity of the System was jeopardised without any physical
damage. Once the fault has been introduced and activated, often it will be indistinguishable from a physical
fault and the safety related risks are the same.

Another source of risks is the human user itself and related to the way he can or is allowed to interact with
the System. In this case the risks are related to many aspects. Many Systems are increasingly complex and
no user is supposed to know all the details of the inner workings. Hence the interface with the System
should be predictable and unambiguous. For new users, it should be intuitive. As the user, just like the
environment, it is part of the larger System that controls the System, he should take the correct actions at
all times. To minimise this risk, we say that the usability of the System must be adequate. The challenge
here is that this involves familiarity, hence convention and even adequate training while the diversity in
humans is large, and psychology is often not a discipline in which engineers excel.

Lately, as more and more Systems become interconnected and increasingly record our personal data, the
need to protect this data is a factor as well. This in turn results in privacy issues but as more and more
financial transactions are electronic, and our private data can be abused to cause financial or other harm.
Until some years ago, this was a small risk, but as the border between embedded Systems and general
purpose computing Systems (often called IT Systems) is becoming opaque, this aspect is gaining in
importance.

With this view, we can understand that what really matters is that a user (whoever or whatever that is) can
trust the System. We call this Trustworthiness. It is clear that for a System to be trustworthy, it is not
sufficient to be safe. We define it as follows: A trustworthy System is a System that a user can trust to meet
high standards of safety, security, usability and privacy.

Trustworthy System
Safety Security Usability Privacy

No physical fault can No injected fault can No interface fault can No personal data can
cause harm cause harm cause harm cause harm

1.3. What is Systems Engineering?

While we have already used the term above, we have not elaborated on it. Systems Engineering can be
defined as follows:

Systems Engineering is the collection of Activities in a Systems Engineering Project to define and
develop a System that will meet all expectations.

This is a very generic definition. It applies to any human made System, whether it is a social or a technical
one. We will focus our attention on those Systems that are complex enough to pose a challenge to develop
them as trustworthy ones. A System can be classified as complex if it involves many activities, many

Altreonic NV From Deep Space To Deep Sea

Trustworthy Systems Engineering with GoedelWorks 3

components and many decisions that need to be taken. It’s not the sheer number of these that matter but
most importantly how all the constituent elements interact (and that is sometimes in very indirect and
subtle ways). In particular we are mostly concerned with embedded Systems, Systems whereby electronic
hardware and software are used to make the System meet all its Requirements.

Ludwig Wittgenstein
“Philosophical Grammar”
65 years ago.

“A blueprint serves as a
picture of the object which the
workman is to make from it.
... for the builder or the
engineer, the blueprint is used
as an instruction or rule
dictating how he should
construct the building or
machine. And if what he
makes deviates from the
blueprint, then he has erred,
built incorrectly and must try
again.”
“... What we may call
‘picture’ is the blueprint
together with the method of its
application”.

Wittgenstein defined
Systems Engineering

Systems engineering is however not an isolated set of
activities. It is a System in itself that follows a Process with
many dependencies, but in general we can distinguish 3
main activity domains:

Organisational Processes: Systems engineering can only
work if it is itself embedded in an organisational
environment that provides the pre-conditions for success. A
simple example is recruitment and Human Resources
management. A Systems engineering Project is a complex
one and it requires people with the right skills. It also
requires an organisational culture that favours a true
engineering culture. The latter is not restricted to technical
activities. An efficient organisation that is capable of good
communication with potential users, planning Resources,
procurement of parts and product manufacturing are
equally well needed.

Supporting Processes: to execute a Systems Engineering
Project, the organisation needs to have a number of
technical Processes in place that are generic for all Systems
engineering Projects. Their goal is to support the
development and engineering to become less chaotic. A
simple example is configuration management. This must be
in place to avoid that engineers spend their time figuring out
what changes their colleagues made to other parts of the
System. It is also essential to make sure that the final System
has a well known and coherent configuration.

before the term even

/ Development Processes: these activities are the core of the
existed.

work to be done. While the most gratifying ones are the

development itself, true Engineering consists of a lot of

other activities like defining and analysing the Requirements
and Specifications, developing simulation Models, verifying
mathematically (using tools) the correctness of the Models, testing and verifying and finally integrating and
validating the results.

A Systems Engineering Project is seldom an isolated activity and requires a full life-cycle view. Activities that
have an impact before the Systems Engineering Project starts are for example the formulation of goals and
concepts, Requirements collection (from any stakeholder) including legal or societal Requirements. There
might have been previous Projects in which sub-system parts were developed. Activities that must be taken
into account after the System was developed are first of all the production of the System. Design for
production is an important Requirement. Once the System enters its operational life, users must be trained
and the System must be supported and maintained, maybe even upgraded or redesigned.

Finally, when the System is taken out of service, it must be disposed off. When the System is safety critical,
two important Requirements will have to be met as well. The first one is configuration management
because a System can only be safe if all its components work perfectly together. There have been airplane
incidents that were caused by using a slightly different screw during maintenance. The other one is

Page 10

Altreonic NV From Deep Space To Deep Sea

Trustworthy Systems Engineering with GoedelWorks 3

traceability. When something fails, trust can only be restored and improved if the cause and chain of events
resulting in the failure can be traced back.

1.4. The subdomains of Systems Engineering

Seen from the outside, it barely matters how a System is composed, what technologies were used and how
it was put together. Different Systems can provide the same or similar functionality to its users, even if the
underlying technology is drastically different. Originally radios had very few and fairly big components. By a
way of speaking, one could almost see the electrons moving in the amplifier tubes. Today, one can listen to
internet radio while there is no longer a traditional radio-wave receiver involved. The sound arrives in digital
packets over a wire. Radios are now single chip devices using digital logic and software to provide the same
function as the original coils and radio tubes.

Phase1 Phase2 Phase3 Phase4
Cost of issue resolving:
Lowest Low Moderate High Very High
<\ e e e
, Firmware System System System
Requirements : Specifications System o Development Integration Validation Maintenance
Capturing Capturing Architecting ‘
< FMEA safety |
FTEA Specs
[> Packaginq _ ‘ ____________
% Specs ‘
Ao iy | HW
Pl Specs ‘7‘
System Firmware Firmware System
= System il an,j’ Safety [_ System] Firmware | Architectural | jon || System | ..S.Yf‘?-ml 1 Mai \ce
Requirements Analysis Specifications Specs Design and Test Integration
s s S D in Specific D in Specific D in Specifi S S S
Requirements Specifications Architecture Specifications Architectural Beta 4 Released =) Released =) Updates ——
Design D Release Source Code Source Code
D Normal Case Normal Case & Distribution
Test Test Results D
Test Cases Test Cases D procedures D System Validation
User Manual Test Results Results
Fault Cases Fault Cases D

An example of a systems engineering project split in subdomains during development

Nevertheless, once the System Requirements have been agreed upon and specified, engineers will select
implementation technologies each requiring different knowledge and skills. Hence, the engineering Process
will be split in technical subdomains, each developing their part, after which they come together again to
deliver the System. The different subdomains are however not isolated. Decisions taken in one domain
affect the capabilities in another domain. For example when a certain processor is selected, it will
determine how much can be done in software. It will also affect the power consumption and maximum heat
dissipation. A good System design is one whereby the right trade-offs are made to achieve the goals. The
perfect solution doesn't exist because Requirements will conflict and one solution doesn't fit all.

Let's take a look at a typical embedded device or rather a System with embedded technology inside. Think
about a printer, a pacemaker, a car, a house, a train, an airplane, a Mars rover, a submarine and so forth.
Whether small or large, you are likely to need engineering activities in the following domains:

Mechanical and materials engineering: real-world devices are subjected to an often aggressive
environment, putting stress on the embedded device. Vibrations, shocks, heat, cold, humidity, chemicals or
even sunlight, the air or cosmic radiation will attack the packaging and the physical structure of the System.
If this results in the integrity of the delicate electronics inside being damaged, or connections among them
failing, the results can be fatal.

Altreonic NV From Deep Space To Deep Sea Page 11

Trustworthy Systems Engineering with GoedelWorks 3

Power and energy engineering: all embedded systems need external energy to function. Increasingly, it is
important that they use this energy efficiently and that they can cope with varying energy sources. A good
power supply design will increase reliability and will decrease life-cycle costs.

Hardware engineering: this is today often the term used to designate all electronic engineering activities.
Some Projects might decide to develop their own chips (ASICs), use reprogrammable ones (FPGAs) or just
buy readily available processor parts (for example microcontrollers) and put them together to create a sub-
system component. The hardware part of an embedded System might require specialists in many more
specific domains: processor design, analog design, RF design, MEMS (tiny mechanical parts on a chip), etc.
While the analog domain is often less complex, given the scale and speed of the circuits they remain a
challenge. All hardware operating in the (synchronous) digital domain is clocked and the issue is that few
billion elementary structures (often called gates) in the hardware share that clock. The challenge is that
these billion gates operate as a huge state machine whereby all gates must remain synchronised. As the
timing parameters of the gate circuits will vary with temperature and supply voltage, this is not a trivial
matter. Today these issues are solved by applying large enough robustness margins during the design and by
carefully controlling the production Process.

System Functionality

Requirements fulfilled?:

e .

g Stakeholder\‘

f——————Vallidation & Testing: _ Requirements /
Application \\ /

Capabilities —
/System \
Q)emfcatlons /

l<@Implement SW— System fJ

Embedded SW \\ DESIgn
- Capabllmes
Implement HW
I T T 1
i Physical System
Firmware Compilers Documentation Hardware
& Tools
I T T 1
Interrupt . Analog I/0
cPu controller Memory Documentation and digital logic

Dependencies for embedded software

Software engineering: on clocked reprogrammable processors a software program will often give the
embedded device its application specific functionality. Whereas the hardware state machine is relatively
static, a software state machine is dynamic and its behaviour can be data dependent. Contrary to hardware
however, a software state machine has no properties that vary with external influences, hence it is
(theoretically at least) possible to fully verify and predict the behaviour of software in detail. Software has
no bugs, only errors.

There are undoubtedly more engineering disciplines that come into play. Human interface engineering is
often a neglected one. Today, Production Engineering is more and more part of the Development Activities.
Within the different engineering subdomains one can find more specialised subdomains. Algorithmic
experts will develop the right algorithm to process the data, hydraulic engineers will add their bit, control

Altreonic NV From Deep Space To Deep Sea Page 12

Trustworthy Systems Engineering with GoedelWorks 3

engineers will design the control loops to keep the System stable, etc. But one thing is certain, they all must
work together to achieve trustworthy Systems Engineering.

In addition, there is a long dependency chain between the domains. For example, when developing
embedded application software, the software engineer will need to do more than just write his small part.
He will link third party libraries, he will use a compiler and linker in the assumption that they are error-free.
Even when that is the case, the correct behaviour will depend on the correctness of the documentation (of
the hardware as well as the software) and on the hardware being defect-free. Often, this will not be the
case and then he has to find a work-around so that the application itself is still behaving as specified. The
example, illustrated in Figure 6 illustrates how a good engineer must know about the other domains he is
working in to achieve good results.

1.5. What s Resilience Engineering?

After we have reached beyond safety and went for trustworthiness, there is a further step worth pursuing,
partly because it is becoming inevitable. As Systems become larger and more complex, it is no longer
enough to design them for trustworthiness when they operate normally. We must think in terms of
providing maximum required functionality, often called Quality of Service, taking into account that the
System will not always have all its Resources available. This is more in line with the way biological Systems
work: an ant colony remains an ant colony even if a fire wipes out part of the ant population.

This is not always the case in safety engineering practices: when a failure is detected - and this can be one
of its million tiny components, the System will either shutdown or remain operational in an often severely
degraded mode, or either coarse grain redundancy will be used to keep the functionality at its original level,
but a next failure is then often catastrophic.

Resilience engineering works differently. It will look for architectures that can tolerate partial failures. It will
not seek to maintain full functionality but will seek to maintain the best possible functionality with the
Resources available. Resilient Systems have often architectures that are very modular by design and have a
redundant but distributed capacity.

The South Pole Station Dome (being deconstructed)

Altreonic NV From Deep Space To Deep Sea

Trustworthy Systems Engineering with GoedelWorks 3

A simple example is a meshed roof construction. The roof will not cave in because some rods are lost.
Networked Systems (think about the internet of a mobile communication System) often also work this way.
In the control engineering domain this was first introduced to keep Systems stable even if a major failure
occurs. Often this requires running a simulation Model in the control loop. Examples are flight control
Systems that control the plane using only the engines when for example parts of the wings are damaged. In
general a resilient system will be designed to be fault tolerant in all cases. If a failure is detected it will not
simply go into a so-called safe mode (like limiting the engine to 1000 rpm and flashing a warning), it will
retain all functionality but with less redundancy should a subsequent failure occur. This approach is often
avoided for reasons of cost. This is true if the measures are applied on an existing architecture. A well
chosen architecture is however resilient by design and then the life cycle cost can even be lower.

An important difference with more classical approaches is that a resilient System, besides having a more
resilient architecture, gracefully adapts itself to a change in the available Resources. It will not fail
immediately, but e.g. recover from the errors, maybe even repair itself, rearrange Resources so that it
remains "alive". After all, this is the ultimate goal of any System. Recently, systems that adapt and even
become better after they experience issues (a general term for anything that could or went wrong) have
been called anti-fragile, to indicate that there is a step beyond resilience. We will explore this deeper in the
chapter on the ARRL (Assured Reliability and Resilience Level) criterion.

Altreonic NV From Deep Space To Deep Sea Page 14

Trustworthy Systems Engineering with GoedelWorks 3

2. Unified Systems Engineering

In this chapter we outline a generic, unifying approach to systems engineering. Based on the premise that
engineering is essentially domain independent but that each domain applies the same type of Process Steps
in a domain specific way.

2.1. A Process as a System

We have until now been speaking about Systems in terms of something physical that has to be developed. It
answers the question of "what" is it that we need to develop. In Systems engineering, it is however equally
important "how" it is developed. Therefore, a Systems engineering Project has two main types of
components: the Process that is followed and the development Project of the System itself.

-
Roadmap and Operations and
planning Maintenance
Business case Production J
Requirements and Validation and
Specifications Testing

System level J

(System Design L Verification and

Testing

L SubSystem

Verification and

Testing

Development

SubSystem level J

Design

A simplified iterative V-process model

Let's take as an example the development of a piece of software. It includes activities of writing the source
code statements, compiling them, running the resulting executable and testing it. This will iteratively result
in a working program. But depending on the skills of the software programmer, this can take less or more
time to get it right. A skilled programmer will follow a specific set of steps that will lead him faster and more
predictably to a reliable piece of software. In essence, a skilled programmer has developed his own
"Process" to deliver a better job. What Systems engineering does is to take the best of practices and to
define them as a Process that should be followed by an organisation or Project team. Standards define
these practices as recommendations, although certification might impose rather strict obligations. In any
case, any organisation will have its own history and heuristic practices and they must be integrated with
what standards might impose. For example, the software engineering Processes will define that the

Altreonic NV From Deep Space To Deep Sea Page 15

Trustworthy Systems Engineering with GoedelWorks 3

software tools like the compiler must be qualified first, an adequate version management System needs to
be used, coding rules need to be obeyed, peer review need to be in place, etc. The latter aspect also hints at
a third component that defines the Project: the Work Plan. It defines when the different Activities should
be executed using specified Resources.

Another example is testing of hardware. Testing will verify that the System and its component meet the
Specifications. This is only possible if the testing happens in controlled circumstances. For example, the
Specifications must be stable and approved, the test set-up must be well defined and repeatable and the
test procedure must be defined. The testing will produce a deliverable as well, i.e. the test report. The way
to see this is that the testing Process is like a small Project that requires specific Resources and produces a
specific product, the test report. Hence, one can see that a Process, in casu a Systems Engineering Process is
also a System that needs to be developed first. The sub-system components can include humans,
equipment or simply all that is needed to produce a report, but it remains an Activity that must be
trustworthy.

One of the first processes to be developed (and imposed) was the so-called waterfall model. It imposes a
linear process flow whereby requirements are developed, then fed into development after which the
system is tested and validated to see if it meets the original requirements. While correct in principle, such a
rigid process rapidly breaks down because it assumes that the requirements are complete and perfect.
Therefore the waterfall model was made more iterative by introducing feedback and verification steps early.
This became to be known as the V-model. This is still one of the best models as it equally applies for very
small systems and with very small steps. Such a process is then often called agile or iterative. In reality any
process can be iterative if not only the order of the steps is considered but also the state of the different
process entities. This will be explored further when discussing the GoedelWorks dependency relationships.

2.2. Unified Semantics

As we have seen in the previous sections, Systems Engineering touches many domains. We focused on the
technical ones, but there are more. Systems Engineering starts with formulating a goal and that involves
management, political, societal, financial and many more people. The first question to ask is whether they
all speak about the same System. Even if they do, their perspective can be vastly different. The second
question is whether they speak the same language. They might use different terms to talk about the same
thing or they might use the same term to designate a different
thing.

Even in the technical domains this is very often the case. This
is because terms and words have a context and a context has
history. When a new domain emerges, people often borrow

“..Idon’t want to get
bogged down in semantics

causing problems”. terms from another field and select it based on analogies. Or
the word might have its origin in a different natural language
Pervez Musharaf and is then erroneously imported. In the technical domain,

people often will use acronyms, typically not understood by
newbies in the field but also it might happen that the original
meaning of the acronym was lost in time.

This is an essential observation for Systems Engineering. As we have seen, the scale and complexity of
Systems Engineering is very wide and it is obvious that it involves a lot of communication between people
coming from different domains. If they don't understand each other, how can they then develop the right
System and do it right? Let's take a simple example, the word 'scheduling'. For the production engineer, this
means the order in which a product is produced on a production line. For the electronic hardware engineer,
this means mapping his signals correctly in the clock domain. For the software engineer, it means defining
the order of execution of software processes. Moreover, people also develop a sense for orders of
magnitude. For the production engineer, time might be measured in minutes. For the software engineer, it

Altreonic NV From Deep Space To Deep Sea Page 16

Trustworthy Systems Engineering with GoedelWorks 3

is likely microseconds or milliseconds. For the hardware engineer, it is more likely nano- or picoseconds.
When each of them says 'this is fast', they are most certainly thinking about very different time intervals.

Process Diagram Business Process
Management Business Process
Mapping Business Process
Modeling Communication
Process Diagram
Communication Process Model
Decision Making Process Design
Process Document Management Document
Management Open Source Elements Of
Communication Process enterprise
Content Management Hiring Process

Interview Process Manufacturing

Process Marketing Strategy Process
Microsoft Document Management Pdf Document

Management Performance Appraisal
Process Performance
Management Process
Performance Review Process

Process Flow Chart Process

Flow Chart Examples Process Flow
Chart Excel Process Flow Chart

Template Process Flow
Dlag I'aM Process Mapping

Examples Procurement Process

Product Design Process
Product Development Process
Project Planning Process Sewage
Treatment Process Six Sigma

The same applies when we dig into the details of
technical Specifications. Consider for example
communication protocols. Some of them are described
requiring 1000's of pages. How sure are we that two
devices allegedly speaking the same protocol will never
have differences in their protocol implementation? A
single tiny difference and the communication can hang.
Another example are processor instruction sets. Most
processors, even within the same family, will have
subtle differences and will use different terms. And
when we look in the world of software, we see an
explosion of terms, interface functions, all vaguely
describing the same things but with obnoxious
differences and side-effects when using them.

What above examples illustrate is that in Systems
Engineering it is not sufficient to define terms and
functionalities, one must also define their associated
behaviour. This means that when terms and language
are used one must also define their semantics in their
context. Moreover, the semantics should be the same
everywhere. We call this "unified semantics" and it
results in two main benefits:

Firstly, unified semantics means that the same term is
used in a unique way with a unique meaning. An
important consequence is that overlapping semantics
must be avoided, each term should describe a well
defined and unique behaviour or property of the
System. This is linked with another important property
that is beneficial in any good system architecture:
orthogonality. Choosing the right, orthogonal terms will
often help in finding the right orthogonal architecture.

Secondly, specifying terms and concepts in a correct
way is an important first step in Systems engineering.
The reason being is that it is the first step in
formalization. One can compare Systems Engineering

with the activities of writing a novel composed of
sentences. If we don't want to have gibberish at the end, we must agree on the meaning of the terms and
we must agree on grammatical rules on how to construct valid sentences.

The meaning of the terms and the Grammar rules do not define the sentences themselves. They define a
framework that is more abstract than the sentences we will formulate. This is often called a meta-Model.

We often use the term System Grammar in the context of Systems Engineering. To reduce the confusion, in
the remainder of this booklet we will often use an upper case letter to designate a term that has to be
understood in the specific meaning of the system grammar detailed further on.

Altreonic NV From Deep Space To Deep Sea

Page 17

Trustworthy Systems Engineering with GoedelWorks 3

2.3. Interacting Entities Semantics

In the previous section we mainly talked about behaviour and properties of a System and why it is
important that we describe these in a unique way. The behaviour and the properties of a System are
however what we sometimes call 'emerging properties'. While a System can be composed of tens or even
billions of composing parts, none of them will result in the observed behaviour on its own. It is all the
components working together 'in concert' that are responsible for the behaviour. At a more abstract level
we use the terms 'Entities' and 'Interactions'. We can then describe the structural properties of a System as
'Interacting Entities'. How they fit together we call that the 'architecture'. Note that this is at an abstract
level. In a Process for example Entities can be humans that take a set of written Requirements (another set
of Entities) and transform them into written Specifications (another set of Entities). The Interactions are
‘reading', 'writing' and likely also meetings during which the Requirements and Specifications are discussed.

In the technical domain, Entities and Interactions can often
be identified in a more concrete way. An Entity will be a
physical component (a sub-system) and an Interaction will
be a concrete exchange of information, obeying much
stricter protocols than human language allows. Note that
the Interaction can also involve transfer of materials or
energy (e.g. a hydraulic pressure). This view has a number
of benefits. First of all it neatly expresses how a System is
composed of smaller Systems, etc. Interactions on the other
hand allow us to use a component without needing to
know all its internal details. It is sufficient to know how the
Interaction is defined. Interactions and protocols allow us to
hide the inner state of a composing Entity, even the way it

Wikipedia defines system as
follows:

(from Latin systema) “whole
compounded of several parts
or members. It is a set of
interacting or interdependent
entities forming an integrated
whole.”

System characteristics include:

1. Structure,

2. a set of behavioural norms,
3. interconnectivity and

4. units that function

is implemented, without jeopardising the way the System
will behave.

Referring to the notion of unified semantics in the previous
section, one can see that there is a benefit to keep this view
of a System as a set of Entities and Interactions consistent

in all phases of the Systems Engineering Process.
Concretely, it pays off to map Requirements and
Specifications fairly orthogonally to well defined Entities
and Interactions. As we will see further, these are the
components of various types of “Models”, used e.g. for
simulation, formal verification, architecting, etc. Hence, it will be beneficial that all these Models have
similar semantics. For the implementation this means that we should be targeting a concurrent, event-
driven programming model and that even the hardware should facilitate this kind of programming model.
Simulation models are for example often based on large system loops (convenient for simulation) but this
often means that such simulation code is not easily translated into a concurrent, or even distributed
program. This also makes such code less portable. The same applies for Formal Models that often rely on
the notion of a global state machine. Again that might be convenient for verification, but not what the
software needs.

independently within the
system

Altreonic NV From Deep Space To Deep Sea

Page 18

Trustworthy Systems Engineering with GoedelWorks 3

2.4. A unifying model for Systems Engineering

Focus domain:
Focus domain: Formalised Modeling

Formalised R&S capturing

\
chitecturd
o Model(s)

User
Applications

Common Formalised
Meta-Language

Unifying
Repository

2p0d BwnuUNY

(Formalised
Meta-Model)

Runtime environment

supporting distributed

Common Systems concurrency and
communication

Grammar &

) semantics

! Unifying paradigm:
} Interacting Entities Platform with native support
- __] for distributed (fine-grain)
o . . concurrency and
Unified Systems Engineering supported by GoedelWorks communication

A unifying view on systems engineering

Reading safety engineering or Systems Engineering standards can be a daunting Task, certainly the first
time. There are several reasons for this. First of all, these standards came gradually into being often driven
by an industrial or societal need. Most of the time, it is the work of a committee, stretched over many years.
In addition few scientific work has been done on the subject, although much work has been done on
specialised subdomains. For this reason current standards are often heuristic in nature, albeit newer
releases of the standards (e.g. 1ISO-26262) have clearly benefited from user feedback. It should be noted
that there are two classes of standards. European standards are more prescriptive and normative, whereas
US standards are more goal oriented, leaving it up to the user to prove that they have done everything
necessary to reach the goals. Examples are e.g. DO-178B/C. These standards also follow more the
philosophy of the CMMI maturity Model, whereby quality of the organisational Processes (of which
Engineering is one) is seen as a result of the "maturity" and capability of the organisation and less the result
of following a prescribed Process.

To get a clearer picture on Systems engineering, we have analysed different Systems Engineering Processes
as described in the various standards and publications and tried to develop a generic meta-Model for it that
can be applied to almost any engineering Project. We define the concepts at a generic level. Together they
create the meta-Model of Systems engineering. Domain specific concepts can further be derived from these
generic concepts.

This list is certainly not complete but new terms and concepts should be refinements of these generic
terms. Refinements can be driven by a specific domain or Process of by a further decomposition and
definition of attributes. A typical example are Specifications that are refined into Functional Specifications
such as Interface Specifications, Implementation Specifications and Test Specifications and non-functional
Specifications that often are related to properties of the system like power consumption, maintainability,
etc. By themselves these concepts do not define a Systems engineering Process or Project (as we will see
further this distinction is for practical reasons). In the next sections we will link these concepts and define
their possible state attributes.

Altreonic NV From Deep Space To Deep Sea Page 19

Trustworthy Systems Engineering with GoedelWorks 3

2.5. Systems Engineering: different views that need to be combined

A major issue in systems engineering, and that applies also for many of its subdomains, is that engineering a
system or product requires the convergence of different wide ranging views that each look from a different
perspective. This partly explains why one finds that the terminology is not always consistent and why no
standard or reference text provides coverage of all aspects. It also explains why one finds multiple
complementary engineering approaches indicated with terms like “requirements driven engineering”, “test

” u

driven engineering”, “model driven engineering”, etc. In reality, one needs all of them.

Requirements and Specifications Architectural and functional
capturing modeling

Properties

L

/v Actions
Entity
/ Interaction

Interfaces

Systems

The mental mapping from the intentional domain to the implementation domain

Project (system)

Architecture of Work Plan

System

| \ | [

Enti H Interaction ‘ Work Change
‘ n‘tlty Package Request
‘ Attribute H Attribute ‘ | \

‘ ‘ Task ‘ ‘ Task ‘
‘ Function H Function ‘

| |

‘ Interface H Interface ‘

A simplified view of a systems engineering Project

In addition, a lot of the engineering activities really happen in people’s mind. Engineering is really the
discipline that allows us to transform initially abstract ideas and concepts into real tangible objects. This
transformation is really like a mathematical mapping from the abstract into the concrete domain. As such,
this is reflected in Wittgenstein’s definition but also in the main activities one can distinguish in an
engineering project. The previous two diagrams illustrate this. Requirements and Specifications capturing is
about properties and statements about the system and its components. In the modelling side of

Altreonic NV From Deep Space To Deep Sea Page 20

Trustworthy Systems Engineering with GoedelWorks 3

engineering we select entities and define how they interact so that they fulfil the required properties. This
mapping phase can be seen as what really happens when we develop the system. Similarly, when executing
the project, then the different Activities need to be planned in time. We call this the Work Planning,
traditional the domain of “Project Planning”.

2.6. Aninformal view on Systems Engineering with GoedelWorks

So, how do we go about "Engineering" a System? The first activity to perform is to figure out what the
System should be able to do. This is often called Requirements and Specifications capturing. Requirements
will be collected from many sources, often called the stakeholders. Given that there are many sources, a
first challenge will be to make sure that the Requirements are well understood. Semantics come into play
but also correctness. Words can be very vague and have multiple meanings. The first stakeholder is the
potential user. What does he expect the System to deliver? Other stakeholders can be people with different
interests: financial, political, technical, production related, etc. Often these Requirements will act like
boundary conditions.

In the GoedelWorks metamodel we strictly distinguish between Requirements and Specifications.
Requirements are often qualitative in nature and the collected Requirements will often not form a coherent
set. There will be conflicting Requirements, nice-to-have Requirements, must-have Requirements as well as
Requirements that are not even related to the System to be developed. Often, Requirements will not be a
sufficient base for the engineering activities to start. Therefore, Requirements must be quantified and
translated into concrete Specifications. The Requirement might say "the car will be a better one than the
competitor’s model". The Specification will give concrete numbers like speed, acceleration, fuel
consumption, capability, etc. Specifications cover multiple domains. Most Specifications will only cover the
functionality in normal operating conditions. Other Specifications will cover issues of testing. Important but
not always trivial to obtain are the Specifications that cover the cases when things are not normal, like
component failures or externally introduced failures or even damages to the System.

Once Specifications have been determined, engineers can start looking for possible implementations. We
call this the Modelling activities because the Process is iterative and multiple Models will need to be
developed. Simulation Models, including software based virtual prototypes, can be used to find the best
possible implementation, but they play an important role in verifying the soundness of the Requirements
and Specifications. It answers questions like “is this really what we want?” and “what-if- questions”. Formal
Models can be used to verify and prove that the implementation will be safe, or at least that some essential
properties can be guaranteed. These two types of Models can often be developed in very different ways and
using very different tools than the implementation Models. It can be beneficial that the implementation
Model is obtained from a simulation Model (as it avoids a translation step) but not always (because it also
limits the conceptual views on the System). Many people might not consider the final implementation as a
Model, but the reality is that many implementations can meet the Specifications. Implementation Models
are really architectural Models as they define how the System is structured. This is where the Entities and
Interactions come into play. They are the execution seat of the Specifications and the way they are
structured will result in the System's behaviour and properties as specified.

The above paragraphs were mainly concerned with defining and implementing the right System (the
"what"). Engineering however is also about the "how" to get there and how to do that in the right way. This
is related to the Process that needs to be followed with a Process being composed of a number of Steps
that should be followed. In a concrete Project, these Steps become the Works Packages, each having their
oxn specific Work Plan. A concrete Work Plan defines how the resources are to be used and when. In a
trustworthy Systems Engineering Project, this entails more than developing the System and its components.
As we have seen above, part of the work is to collect the Requirements and Specifications and to make sure
they are complete and correct. Regrettably, this effort is not always explicitly planned for whereas research
has shown that incorrect Requirements and Specifications are the most prominent cause for Projects failing

Altreonic NV From Deep Space To Deep Sea Page 21

Trustworthy Systems Engineering with GoedelWorks 3

Packages. These are the core activities of each Project. They require Resources, Specifications as input and
consist of sub-Work Packages and a number of distinctive Activities, often designated as Tasks.

The work starts in parallel to the Requirements and Specifications Work Package to collect background
information and relevant References. A good Project is not developed in the void and should avoid
reinventing the wheel. In addition, for certification purposes the relevant standards should be made
available, databooks collected, etc. Organisation specific rules, procedures and Resources must also be
available. We call such information References. These are strictly speaking not part of the Project, but can
be very valuable sources of information.

A concrete Systems engineering Project will start with Work Package activities that verify that the
organisation itself is capable of executing and supporting the Project. Is the right Systems Engineering
culture in place? Is there a trustworthy, certified quality System? How is Human Resources planning
organised? Not all these questions need to have a fully affirmative answer to allow Systems Engineering.
Small and lean organisations can produce trustworthy products as well.

In parallel the supportive Processes need to be verified. Version management, configuration management,
test capabilities, documentation, procurement including qualification procedures for acquiring external
components, software tools, or subcontracting, etc. should be in place before the Project starts.

The major work is the development itself. The first work to be done is to carefully analyse the Requirements
and the general context in which the System will be used. From these a coherent and complete set of
Specifications must be derived from the Requirements. Specifications are related to the use of the System
and the properties it must have, but already at this stage, three groups of Specifications must be completed.
The most obvious ones are the "normal case" ones. These are related to the use of the System when
everything is operational and the System is used as intended. A second class is related to testing, called the
"test cases". These must be specified because testability will impact on the design. For example test points
will draw extra current or state variables and parameters need to be logged, requiring extra memory.

The third group is the most difficult one. These are related to when faults or malfunctions occur. We call
these the "fault cases". Finding these requires a careful analysis, often called de HARA (Hazard And Risk
Analysis) in the context of safety engineering, but this equally applies to security related faults. This step
will try to develop the general hazard and fault Models for the System (called Safety or Security Cases),
resulting in Specifications for the System to mitigate or even annihilate the effects of the hazard and faults.
In principle this step has to be done independently from the implementation while these Specifications
must be available before any development or architecture is defined. This is because they can have an
important impact on the implementation and its architecture, especially if the consequences of failures or
security breaches are severe. Once an implementation has been decided upon, we also need to investigate
the effects of faults in any of the components. This activity is often called a FMEA (Failure Mode Effect
Analysis) and is complementary to the HARA described above. Such analyses lead to pre-conditions in
terms of the quality and reliability of the components and the production process (to reduce the risks up
front) but are needed to assure and assess the required behaviour when hazards and faults occur. The
careful reader will have noticed that above analysis reflects the ARRL criterion we discussed in the previous
chapter.

Once development can start, each Work Package will produce one or more so-called Work Products. They
are well defined deliverables and implement the Specifications. We can divide these Works Products in two
large groups. The first group contains the physical resulting Items of the development done and together
they constitute the System being developed. The other set of outputs are related to the Process
requirements. They carry the contract that comes with the WorkProducts in terms of documented evidence
that the Process was followed. We call these Artefacts.

For this to happen the Work Package will need Resources (people, equipment, templates,...) and each Work
Package will be composed of a generic set of Tasks. These can be grouped in the following seven Activities,
each consisting of smaller phases.

Altreonic NV From Deep Space To Deep Sea Page 22

Trustworthy Systems Engineering with GoedelWorks 3

be executed in an iterative and incremental way (sometimes called an agile process although the term agile
is not free from religious factionism). This provides early feedback allowing finding issues early on. The
metamodel however expresses completeness and defines dependency relationships. The Engineering
Process executed in a Project is very much one of Refinement and Decomposition whereby we gradually
come closer to a final realisation.

At every moment decisions are taken and at every moment these decisions must be confirmed to be the
right ones. Hence the metamodel does not express an absolute order in time for the Activities but a partial
order in time of confirmed decisions. The Refinement and Decomposition Process however creates a
dependency graph and hence imposes a strict order in which the different Project Entities can be approved.
Similarly, a strict control of the configuration is needed as well. Whenever a constituent Entity in the
dependency chain is changed, it might violate one of the dependency relationships or introduce unwanted
side-effects. Hence, a Project configuration is not just the collected entities at a given point in time, but a
complete graph. Before the last entity has been approved, this graph might not be coherent. For example, it
might have missing entity nodes, missing dependency or decomposition links and entities that are in the
process of being developed.

Hence strict configuration management is a must. Note that it applies as well to the composing Entities of a
system as well as to how these Entities interact. It also applies to the composing Activities in a Work
Package. If any of these is changed after being approved, then all depending Activities and Entities need to
be reviewed before they can be approved again.

GoedelWorks allows to generate automatically the dependency and precedence graph for any Project Entity
and hence also makes it easy to use these graphs for executing an impact analysis when for example a
Requirement or Specification was changed or when a change is considered. The same feature makes it easy
to e.g. verify the completeness and coherency of a Project. For example, if a Specification has no dependent
Test Activity, then we know that the system cannot be approved as being in its final configuration.

2.6.1. Real engineering is Process of iterations

Configuration and release Management

Peer review

@ ; . Implementation . m
Simulation Design Implementation
Requirements Cﬁ Cﬁ Cﬁf CJV\ L
Py Validation Release
Specifications % ﬂ /\3 ﬂ % Q Test
Architecture Unit Test TiesEm
Normal Design Design 9
Case

p

Project Management and Tracking

Test cases

Test cases

The Iterative nature of a project is more pronounced in the beginning

As one can see, the Systems Engineering Process has wide ramifications. It starts early and it ends long after
the System was put to operational use. It is important also to see that the System is actually "defined" by

Altreonic NV From Deep Space To Deep Sea Page 23

Trustworthy Systems Engineering with GoedelWorks 3

the Project that developed it as well as by the Process that was used. As we have seen, a Process is also a
System and it requires the same steps for developing it in a Project. To illustrate this, consider the testing
activities. They will follow a test plan, developed according to a template prescribed by the test Process.
Developing a test plan, even as a template, requires the same steps as we described above (Requirements,
Specifications, Development, Verification, Testing, Validation, ...). The Work Product is a test plan template,
that is subsequently is used as a Resource for a Work Package whereby the test plan is a template and filled
in specifically for the System or System component to be tested. This instance of the test plan then becomes
a Resource for the real Test Tasks to be done on the Work Product in Development. Similarly, when a System
uses components, procured from an external or internal party, this becomes a Resource for the
development whereas the component was first developed in a previous Project. Therefore one can see that
Systems engineering is not an isolated activity. In the bigger scheme of things, each Project will have its
place in a culture and environment with a history and itself will give direction to future Projects.

Another aspect is that Systems engineering as described above seems to follow a sequence, a Flow from
beginning to end. Viewed from a distance this is true. A good Engineering Project will know that for example
Requirements are never really "final". Feedback from Development, Testing, etc. will detect weaknesses in
the Requirements and Specifications and hence the latter might need to be adjusted. Once Development is
done and Validation was approved, most likely the Systems will not exactly meet all Specifications due to
small variations introduced during Development, uncertainties on design parameters and System
components acquired from elsewhere. Determining the final values is called characterization (because it
specifies a specific instance of the System that was developed).

2.6.2. Traceability and configuration management

If nothing is final and if the order of executing the different Steps and Activities is iterative, how can we then
arrive at a System that can be validated? The way to reach this goal is state configuration management. As
the attentive reader will have seen, the Flow imposes a dependency chain. Actually multiple ones, one for
each Work Product back to the original Specifications and Requirements and then additional ones for
Integration and Validation. The final System can only be approved (released for production or deployment)
if all preceding Activities, intermediate Processes and Project Entities had been approved before. This is
necessary for two main reasons. First of all, the configuration of the System must be consistent to allow
Validation and Certification. Else, we would have many uncertainties. But, secondly it will save a lot of effort
and Resources. For example, if Testing is done before Verification is done, it is very likely that Testing will not
just find functional errors, but simple errors due to some of the Development not being done according to
the specified Process (simple example: a wrong name was used for a variable).

The most important state transition is when a Project Entity goes from e.g. "in work" to "approved". At that
moment, its configuration must be frozen. But because there is a precedence chain, it creates a partial
order of the approval steps to be taken for developing the Work Product. This is the key to allow concurrent
engineering on the different Work Products (Process artefacts, System components). One can work on
anything in parallel, but approving entities can only be done in the order specified in the dependency graph.
It also means that the architecture of System will allow more concurrent engineering and development
when it is itself decomposed in concurrent Entities with well defined Interactions. This is a key observation
for what is called today "evolutionary" validation and certification. Today many Projects are related to
families of products and often changing one part will create a new member of the product family. If the
architecture is not sufficiently modular and concurrent, then the whole System must be re-certified (re-
verified, re-tested, re-integrated and re-validated). With a concurrent architecture, this work can be
reduced, although never fully eliminated.

Altreonic NV From Deep Space To Deep Sea Page 24

Trustworthy Systems Engineering with GoedelWorks 3

3. Engineering real systems that can fail

The attentive reader will have noticed that engineering a trustworthy system is much more than an error
and trial process. While experience is a valuable asset, following a systematic approach can help in reducing
the residual errors and hence will increase the trust one can have in the system. As such, this remains vague
on what this means in the context of situations whereby faults or hazards occur and the trust in the system
performing as intended can be lost. What we noticed is that while safety and engineering standards
emphasise the process to be followed, they are often specific for a given system. Very little is said about
how this applies to other systems, even if they reuse many of the same components. The result was the
elaboration of the ARRL (Assured Reliability and Resilience Level) criterion.

The Assured Reliability and Resilience level criterion is introduced to be able to classify components and
systems according to the way they can be trusted, especially in the context of fault behaviour. This chapter
can be read independently from the other chapters but it gives a mental framework that helps to come to a
systematic way of engineering trustworthy systems and products.

3.1. ARRL: the Assured Reliability and Resilience Level criterion

Systems engineering aims at developing systems that meet the requirements and constraints of its
stakeholders. Increasingly systems must not only provide their intended functionality, but it must also be
guaranteed in a certifiable way that such systems remain safe (and secure) when subjected to faults or
hazardous situations.

From the safety point of view, the lower the required residual risks should be, the higher the safety related
requirements, often expressed as SIL (Safety Integrity Levels). The same applies for the subsystems whose
faults can induce a safety risk.

We have argued before [1,2,3] that this view is rather narrow. In reality what matters is how much the
stakeholders (including the users) consider the system as trustworthy whereby safety is one of the specified
properties. Similarly, what a user expects is a guaranteed QoS (Quality of Service) level. Depending on the
level, it guarantees that the system will be able to deliver its intended functionality even if faults occur.
Hence, the ultimate case is one whereby the system survives faults. As this criterion is very wide, this led to
the introduction of a novel more normative criterion, called ARRL (Assured Reliability and Resilience Level)
that differentiates between the failure conditions and how the system coops with it.

Depending on the severity of the fault scenario and the desired continuity of the system’s functions this
requires increasingly higher levels of ARRL. In traditional systems engineering, the continuation of the
services is achieved by reconfiguring the architecture and by redundancy. The question is whether this is
sufficient or a necessary condition to reach the novel property of antifragility [10]. Before we answer the
guestion, we recapitulate the existing notions of SIL, QoS and ARRL

3.2. Overview of existing criteria in the domain of trustworthiness

3.2.1. Safety Integrity Level

We consider first the IEC 61508 standard [4], as this standard is relatively generic. It considers mainly
programmable electronic systems. The goal is to bring the risks to an acceptable level by applying safety
functions. IEC 61508 starts from the principle that safety is never absolute; hence it considers the likelihood
of a hazard (a situation posing a safety risk) and the severity of the consequences. A third element is the
controllability. The combination of these three factors is used to determine a required SIL (Safety Integrity
Level), categorised in 4 levels, SIL-1 being the lowest and SIL-4 being the highest. These levels correspond
with normative allowed Probabilities of Failure per Hour and require corresponding Risk Reduction Factors

Altreonic NV From Deep Space To Deep Sea Page 25

Trustworthy Systems Engineering with GoedelWorks 3

that depend on the usage pattern (infrequent versus continuous). The risk reduction itself is achieved by a
combination of reliability measures (higher quality), functional measures as well as assurance from
following a more rigorous engineering process. The safety risks are generally classified in 4 classes, roughly
each corresponding with a required SIL level whereby we added a SIL-0 for completeness. It must be said
however that the standards allow quite some room for interpretation, in particular when it comes to the
use of probabilities and assessment of the controllability factor.

Safety Risk Classification

Category Typical SIL Consequence upon Failure

Catastrophic 4 Loss of multiple lives

Critical 3 Loss of a single life

Marginal 2 Major injuries to one or more persons
Negligible 1 Minor injuries at worst of material damage only
No Consequence 0 No damages, except user dissatisfaction

The classification leaves room for residual risks but those are not considered design goals but rather as
uncontrollable risks. Neither the user nor the system designer has much control over them. This is due to
the existence of non-linear discrete subsystems (mainly digital electronics and software) which was
elaborated further in [5]. This aspect will be important when we discuss the concept of antifragility further
in this text.

The SIL level is used as a directive to guide selecting the required architectural support and development
process requirements. For example SIL-4 imposes redundancy and positions the use of formal methods as
highly recommended.

3.2.2. Quality of Service Levels

A system that is being developed is part of a larger system that includes the user (or operator) as well as the
environment in which the system is used. Note as well that this is a hierarchical notion. A system can be a
subsystem or a component in a large system and can also include services and processes that support the
final mission of a system.

From the user’s point of view, the system must deliver an acceptable and predictable level of service, which
we call the Quality of Service (QoS). A failure in a system is not seen as an immediate risk but rather as a
breach of contract on the QoS whereby the system’s malfunction can then result in a safety related hazard
or loss of mission control, even when no safety risks are present. As such we can see that a given SIL is a
subset of the QoS. The QoS can be seen as the availability of the system as a resource that allows the user’s
expectations to be met.

Quality of Service

Qos-1 There is no guarantee that there will be resources to sustain the service. Hence the user
should not rely on the system and should consider it as untrustworthy. When using the
system, the user is taking a risk that is not predictable

QoS-2 The system must assure the availability of the resources in a statistically acceptable way.
Hence, the user can trust the system but knows that the QoS will be lower from time to time.
The user’s risk is mostly one of annoyance and dissatisfaction or of reduced service.

QoS-3 The system can always be trusted to have enough resources to deliver the highest QoS at all
times. The user’s risk is considered to be negligible.

Altreonic NV From Deep Space To Deep Sea Page 26

Trustworthy Systems Engineering with GoedelWorks 3

The classification leaves room for residual risks but those are not considered design goals but rather as
uncontrollable risks. Neither the user nor the system designer has much control over them. This is due to
the existence of non-linear discrete subsystems (mainly digital electronics and software) which was
elaborated further in [5]. This aspect will be important when we discuss antifragility further in this text.

3.3. The ARRL criterion

We introduce the ARRL or Assured Reliability and Resilience Level to guide us in composing safe and
trustworthy systems. The different ARRL classes are defined in Table 3. They are mainly differentiated in
terms of how much assurance they provide in meeting their contract in the presence of faults. The reader
should keep in mind that the term component can also be a (sub)-system or system acting as components in
a larger system.

We should mention that there is an implicit assumption about a system’s architecture when defining ARLL.
A system is composed by defining a set of interacting components. This has important consequences:

e The component must be designed to prevent the propagation of errors. Therefore the interfaces must
be clearly identifiable and designed with a “guard”. These interfaces must also be the only way a
component can interact with other components. The internal state is not accessible from another
component, but can only be made available through a well-defined protocol (e.g. whereby a copy of the
state is communicated).

e The interaction mechanism, for example a network connection, must carry at least the same ARRL
credentials as the components it interconnects. Actually, in many cases, the ARLL level must be higher if
one needs to maintain a sufficiently high ARRL level at the level of the (sub)-system composed of the
components.

e Hence, it is better to consider the interface as a component on itself, rather than for example assuming
an implicit communication between the components.

Altreonic NV From Deep Space To Deep Sea Page 27

Trustworthy Systems Engineering with GoedelWorks 3

ARRL definition

Inheritance Each ARRL level inherits all properties of any lower ARRL level.
property

ARRL-0 The component might work (“use as is”), but there is no assurance. Hence all risks are
with the user.

ARRL-1 The component works “as tested”, but no assurance is provided for the absence of any
remaining issues.

ARRL-2 The component meets all its specifications, if no fault occurs. This means that it is
guaranteed that the component has no implementation errors, which requires formal
evidence as testing can only uncover testable cases. The formal evidence does not
necessarily provide complete coverage but should uncover all so-called systematic
faults, e.g., a wrong parameter value. In addition, the component can still fail due to
randomly induced faults, for example an externally induced bit-flip.

ARRL-3 The component is guaranteed to reach a fail-safe or reduced operational mode upon a
fault. This requires monitoring support and some form of architectural redundancy.
Formally speaking this means that the fault behaviour is predictable as well as the
subsequent state after a fault occurs. This implies that specifications include all fault
cases as well as how the component should deal with them.

ARRL-4 The component can tolerate one major fault. This corresponds to requiring a fault-
tolerant design. This entails that the fault behaviour is predictable and transparent to
the external world. Transient faults are masked out.

ARRL-5 The component is using heterogeneous sub-components to handle residual common
mode failures.

3.4. s this sufficient for antifragility?

The normative ARRL levels describe as the name says, levels of reliability and resilience. They approach the
notion of graceful degradation by redundancy but assuming that in absence of faults the system
components can be considered as error-free. The additional functionality and redundancy (that is also error-
free) is to be seen as an architectural or process level improvement. But in all cases, contrary to the anti-
fragility notion, the system will not gain in resilience or reliability. It can merely postpone catastrophic
failures while maintaining temporally the intended services. It does this by assuming that all types of faults
can be anticipated, which would be the state of the art in engineering.

3.4.1. Antifragility assumptions

However, the proposed scheme introduces already two concepts that are essential to take it a step further.
Firstly, there is redundancy in architecture and process and secondly, there is a monitoring function that
acts by reconfiguring the system upon detecting a fault.

So, how can a system become “better” when subjected to faults? As we introduce a metric as a goal, we
must somehow measure and introduce feedback loops. If we extrapolate and scale up, this assumes that
the system has a type of self-model that it can use to compare its current status with a reference goal.
Hence, either the designer must encapsulate this model within the system or the model is external and
becomes part of the system. If we consider systems that include their self-model from the start, then clearly
becoming a “better” system has its limits, the limit being the designers’s idea at the moment of conception.
While there are systems that evolve to reach a better optimum (think about neural networks or genetic
algorithms), these systems evolve towards a limit value. In other words they do not evolve, they converge.

Altreonic NV From Deep Space To Deep Sea Page 28

Trustworthy Systems Engineering with GoedelWorks 3

If on the other hand we expand the system as in Figure 1, then the system can evolve. It can evolve and
improve because we consider its environment and all its stakeholders of which the users as part of the
system. They continuously provide information on the system’s performance and take measures to improve
upon it. It also means that the engineering process doesn’t stop when the system has been put to use for
the first time. It actually never ends because the experience is transferred to newer designs.

There are numerous examples of antifragile systems already at work, perhaps not perfect all the time
though most of the time. A prime example is the aviation industry that demonstrates by its yearly
decreasing number of fatalities and quality of service that it meets the criterion of antifragility. Moreover, it
is a commercial success. So let’s examine some of its properties and extract the general principles, as
reflected in the aviation standards and practice [6].

Lessons to be learned from aviation safety

Aviation specific Generic property

The industry has a long track record The domain has undergone many technological
changes whereby an extensive knowledge was built
up.

Development of systems follows a rigorous, The process is open and reflects the past

quantifiable, certifiable process, that is widely experience and is certified by an independent

published and adopted. external authority.

Certification and Qualification requirements foster ~ Systems are designed to be transparent and simple,

developing “minimal” implementations that still focusing on the must-haves and not on the nice to

meet the operational requirements. haves.

Airplanes are designed to be 100% safe and to be Any deviation is considered a failure that must be

operated in 100% safe conditions. The domain has a corrected. By design the system, its components

goal of perfection. and operating procedures aim at absence of service
and safety degradation.

Any failure is reported in a public database and Any issue is seen as a valuable source of
thoroughly analysed. information to improve processes and systems.
Airplanes are operated as part of a larger A (sub)system is not seen in isolation but in its
worldwide system that involves legal authorities, complete socio-economic context. This larger
the operators, the manufactures, the public and system is self-regulating but supervised and
supervising independent authorities. controlled by an independent authority.

Airplanes have a long life time and undergo mid-life The focus is on the service delivered and not on the

updates to maintain their serviceability system as a final product.

Fault conditions are preventively monitored. The A process is in place that maintains the state of the
system is fault tolerant through redundancy, system at a high service level without disrupting the
immediate repair and preventive maintenance. services provided.

3.4.2. Some industries are antifragile by design

To remain synoptic, we will list a few key principles of the aviation industry and derive from them key
generic principles which apply to other systems and provide them with antifragile properties.

Table 4 can also be related to many other domains that have a significant societal importance. Think about
sectors like medical devices, railway, automotive, telecommunications, internet, nuclear, etc. They all have
formalised safety standards which must be adhered to because when failing they have a high impact at
socio-economic level.

Altreonic NV From Deep Space To Deep Sea Page 29

Trustworthy Systems Engineering with GoedelWorks 3

At the same time, systems like railway that are confined by national regulations clearly have a higher
challenge to continue delivering their services at a high level. As a counter example we can take a look at
the automotive sector. Many more people are killed yearly in traffic than in airplanes, even if cars today are
stuffed with safety functions. In the next section we will explore this more in detail.

Deducting some general properties out of the table 4, we can see that systems that could be termed
antifragile are first of all not new. Many systems have antifragile properties. Often they can be considered as
complex (as there are many components in the system) but they remain resilient and antifragile by adopting
a few fundamental rules:

e Openness: all service critical information is shared and public.
e Constant feedback loops between all stakeholders at several different levels.
¢ Independent supervising authorities.

® The core components are designed at ARRL-4 and ARRL-5 levels, i.e. fault tolerant.

3.4.3. Do we need an ARRL-6 and ARRL-7 level?

An ARRL-5 system can be seen as a weak version of a resilient system. While it can survive a major fault, it
does so by dropping into an ARRL-4 mode. The next failure is likely catastrophic. However airplanes are also
designed as part of a larger system that helps to prevent reaching that state. Continuous build-in-test
functions and diagnostics will detect failures before they become a serious issue. Ground crews will be
alerted over radio and will be ready to replace the defective part upon arrival at the next airport. We could
call this the ARRL-6 level whereby fault escalation is constrained by early diagnostics, monitoring and the
presence of a repair process that maintains the operational status at an optimal level. Note that in large
systems like server farms and telecommunication networks similar techniques are used. Using monitoring
functions and hot-swap capability on each of the 1000’s of processing nodes, such a system can reach
almost an infinite lifetime (economically speaking). Even the technology can be upgraded without having to
shut down the system.

The latter example points us in the direction of what a normative ARRL-7 level could be. It is a level whereby
the system is seen as a component in a larger system that includes a continuous monitoring and
improvement process. The later implies a learning process as well. The aviation industry seems to have
reached this maturity level. The term maturity is no coincidence, it reminds of the maturity levels as defined
by CMMI levels for an organisation. The table below summarises the new ARRL levels whereby we remind
the reader that each ARRL level inherits the properties of the lower ARRL levels.

ARRL-6 and 7 definitions

ARRL-6 The component (or subsystem) is monitored and designed for preventive maintenance
whereby a supporting process repairs or replaces defective items while maintaining the
functionality and system’s services.

ARRL-7 The component (or subsystem) is part of a larger “system of systems” that includes a
continuous monitoring and improvement process supervised by an independent
regulating body.

3.5. Automated traffic as an antifragile ARRL-7 system

As we discussed earlier [1, 2, 3, 5], the automotive sector does not yet meet the highest ARRL levels as well
as in the safety standards (like IEC-26262) [7] and in reality (1000 more people are killed in cars than in
airplanes worldwide and even a larger number survive with disabilities)[8,9,11]. The main reason is not that
cars are unsafe by design (although fault tolerance is not supported) but because the vehicles are part of a

Altreonic NV From Deep Space To Deep Sea Page 30

Trustworthy Systems Engineering with GoedelWorks 3

much larger traffic system that is largely an ad-hoc system. Would it be feasible to reach a similar ARRL level
as in the aviation industry? What needs to change? Can this be done by allowing autonomous driving?

A first observation is that the vehicle as a component now needs to reach ARRL-4, even ARRL-5 and ARRL-6
levels. If we automate traffic, we might be able to take human errors out of the equation, but then following
design parameters become crucial:

e The margin for driving errors will greatly decrease. Vehicles already operate in very dynamic conditions
whereby seconds and centimetres make the difference between an accident and not an accident. With
automated driving, bumper to bumper driving at high speed will likely be the norm.

e The driver might be a back-up solution to take over when systems fail, but he is unlikely to be well
enough trained and therefore to react in time (seconds).

e A failing vehicle can generate a serious avalanche effect whereby many vehicles become involved and
the traffic system can be seriously disrupted.

e We can expect that the psychological acceptance for accidents will be much lower for when the
accident was caused with the computer at the steering wheel than when a human driver is at the
steering wheel.

Hence, vehicles need to be fault tolerant. First of all they constantly monitor and diagnose the vehicle
components to prevent pro-actively the failing of subsystems and secondly when a failure occurs the
function must be maintained allowing to apply repair in a short interval.

A second observation is that the automated vehicle will likely constantly communicate with other vehicles
and with the traffic infrastructure. New vehicles start to have this capability today as well, but with
automated vehicles this functionality must be guaranteed at all times as a disruption of the service can be
catastrophic.

A third observation is that the current road infrastructure is likely too complex to allow automated driving in
an economical way. While research vehicles have been demonstrated the capability to drive on unplanned
complex roads, the question is whether this is the most economical and trustworthy solution.

Automated traffic can be analysed in a deeper way. Most likely, worldwide standardisation will be needed
and more openness on when things fail. Most likely, fully automated driving providing very dense traffic at
high speed will require dedicated highways, whereas on secondary roads the system will be more a
planning and obstacle avoidance assistant to the driver.

One can even ask if we should still speak of vehicles. The final functionality is mobility and transport. For the
next generation, cars and trucks as we know them today might not be the solution. A much more modular
and scalable, yet automated, transport module that can operate off-road and on standardised auto-
highways is more likely the outcome. Users will likely not own such a module but rent it when needed
whereby operators will be responsible for keeping it functioning and improving it without disrupting the
service. Independent authorities will supervise and provide an even playing field. Openness, communication
and feedback loops at all levels will give it the antifragility property that we already enjoy in aviation. At that
moment, Mobility will have become a Service.

3.6. Is there an ARRL-8 level?

One can ask the question whether we can define additional ARRL levels. ARRL levels O to 7 are clearly
defined in the context of (traditional) systems engineering whereby humans are important agents in the
required processes to reach these levels. One could say that such a system is self-adaptive. However the
antifragile properties (even when only partially fulfilled) are designed in and require conscious and
deliberate actions to maintain the ARRL level. If we look at biological systems we can see that such systems
evolve without the intervention of external agents (except when they stress the biological system).
Evolution as such has reached a level whereby the “architecture” is self-adaptive and redundant without the
need for conscious and deliberate actions. We could call this the ARRL-8 level.

Altreonic NV From Deep Space To Deep Sea Page 31

Trustworthy Systems Engineering with GoedelWorks 3

3.7. Conclusions

Taleb [10] defines antifragile mostly in the context of a subjective human social context. He quotes the term
to indicate something beyond robustness and resilience that reacts to stressors (and alike) by actually
improving its resistance to such stressors. Taking this view in the context of systems engineering we see that
such systems already exist. They are distinguished by considering the system as a component in a greater
system that includes the operating environment and it continuous processes and all its stakeholders.
Further differences are a culture of openness, continuous striving for perfection and the existence of
numerous multi-level feedback loops whereby independent authorities guide and steer the system as a
whole. The result is a system that evolves towards higher degrees of antifragility. An essential difference
with traditional engineering is that the system is continuously being redefined and adapted in an antifragile
process.

We also defined two new levels for the normative ARRL criterion, ARRL-6 indicating a system that
preventively seeks to avoid failures by repair and ARRL-7 whereby a larger process is capable of not only
repairing but also updating the system in a controlled way without disrupting its intended services. Given
the existence of systems with such (partial) properties, it is not clear whether the use of the neologism
“antifragile” is justified to replace reliability and resilience, even if it indicates a clear qualitative and
distinctive level. This will need further study.

Altreonic NV From Deep Space To Deep Sea Page 32

4. The systems Grammar of GoedelWorks

Just by defining concepts, we don't have a System. This is true for the Project domain and this is true for the
Process domain. In the Project domain, we create a System by defining how the different Entities interact. In
the Process domain, we define how the different Entities are related. The concepts and their relationships
define an emerging Process that has meaning just like the Grammar rules on the terms of a sentence give
the sentence a specific meaning. Therefore, we call this the Systems Grammar.

4.1. Systems Grammar

To understand the emergence of meaning in a Project, one must look at how a System emerges in a Process.
It is initially very much a mental, cognitive Process done by humans.

When a stakeholder speaks or thinks about the "Mission" of a System, he probably has a mental picture
about the System. Likely this picture will resemble something he knows from seeing in the real world or a
virtual world (e.g. movies and SF-novels). What follows is a mental Process of refinement. The mission, as a
top level Requirement (e.g. “We need a deep ocean submarine"), is decomposed in more specific
Requirement statements about the System until an atomic level has been reached, e.g. "the submarine
should be yellow". The Process is one of decomposition and refinement, not one of derivation. We call this
a structural link and it only applies to Entities of the same type (in this case Requirements). As is often the
case, Requirements will be overlapping and not necessarily fully coherent. As they are defined without
much analysis, there will be conflicting Requirements, certainly when we take into account the boundary
conditions of a real implementation. Engineering is always a trade-off exercise.

Once everyone agrees on the Requirements (subject to further investigation) that are to be retained, we
can consider these Requirements as "Approved". Often this is often called the Kick-Off point in a Project, at
least if it is decided to go ahead with the next steps. Some Projects will start earlier, some Projects will then
stop as this decision acts as a "gate" for the next steps.

The next step is to refine the Requirements into hard Specifications. What this means is that we derive
concrete Specifications from the Requirements. Concrete means that they become measurable, verifiable
and also implementable. They should also be unique. One can consider Specifications as quantified or
qualified Requirements, which indicates that there is some continuity whereby Requirements evolve until
they become concrete enough to be called Specifications. Practically speaking, we can select or develop
designs that meet the Specifications and we can define tests that allow us to verify and validate it. The
relationship between Requirements and Specifications is one of dependency. We call this an association
link. Multiple Requirements will result in multiple Specifications and multiple Specifications will be derived
from multiple Requirements whereby the presence of orthogonality (“separation of concerns”) helps to see
order in chaos. Similarly, Verification Tasks will have association links with the Specifications for the Process
to be followed during the Development Tasks and Test Tasks will have an association link with the
Specifications for the properties of the Work Products developed during the development. "Process" and
"Project" can be seen as the container of the "how" and the "what" aspects of Systems engineering.

The actual development work to be done is the development of Entities that implement the Specifications.
We call these the Work Products. For Process Entities, these will typically be templates or guidelines (when
developing a Process). For Project Entities, these will be reports or documented evidence (when the Work
Product is a Project Requirement) or the System or its System components (when the Work Product is a
Project Requirement). The Work Products are the result of the work done in Work Packages, composed of
Tasks (Planning, Design, Development, Verification, Test, Integration, Validation and Review Tasks). Hence
Tasks are linked in a Work Package. Validation Tasks were not discussed yet and they verify that the Work
Product meets their Requirements (answering the question "is this the right Entity?"). A Work Package is
also linked with the inputs it needs: with Specifications (for the Work Products) and with its required
Resources. One could see the Specifications also as Resources, but for clarity it is better to separate them.

Trustworthy Systems Engineering with GoedelWorks 3

In a System development Project the Work Package produces Models as their Work Products. Models can
further be decomposed in sub-Models and finally into Items and Interactions. A Model has hence an
association link with a Work Package and a structural link with it composing Items. One can also consider a
Model as a subtype of a Work Product, but the separation was kept for a clearer distinction between
Process and Projects.

Note that almost any Entity can be decomposed into smaller sub-Entities. Additional Entities that are
related to a Project are References that can be associated with Requirements and Change Requests and
Issues. The latter two can be associated with any Entity.

The result of introducing these links can best be illustrated graphically. The dependency graph was
generated for the Requirement 5 with id-869 in the OpenComRTOS Qualification Package. First we look at
the textual representation below. We can follow the trace from the Requirement REQ-5 being refined into
Specification SPC-3 with sub-Specifications SPC-3.1, 3.2 and 3.3 with defined Tests (TST) and dependent Test
code (WPT) but also the implementation code (WPTs with a link to where it is stored in the version control
repository). This representation is however not so easy to navigate, hence the next figure show the
screenshot and an exported graphml. The latter can be manipulated in a graphml editor or viewer (example:
Yed).

Dependency Tree for REQ-5:

REQ-5: Priority based preemptive scheduling

--SPC-3 - Scheduler

----TST-2.2.6.2 - Empty Ready-List (002)

—————— WPT-3.3.6.2 - Empty Ready-List (002)

----SPC-3.2 - Priority based scheduling

—————— WPT-1.18 - Scheduler

------ TST-2.2.1.1.4 - Raise a Raised Event _WT

———————— WPT-3.3.1.1.4 - Raise a Raised Event _WT

—————— TST-2.2.1.1.7 - Test synchronization in a Raised Event
———————— WPT-3.3.1.1.7 - Test synchronization in a Raised Event
------ TST-2.2.1.1.9 - Test a Not Raised Event _WT

———————— WPT-3.3.1.1.9 - Test a Not Raised Event _WT

—————— TST-2.2.1.1.11 - Test a Not Raised Event _NW

———————— WPT-3.3.1.1.11 - Test a Not Raised Event _NW

------ WPT-2.47 - src/kernel/L1_kernel_scheduler.c

—————— WPT-2.53 - include/kernel/L1_task_api.h

----SPC-3.3 - Fifo scheduling

—————— TST-2.2.6.1 - Scheduler

-------- WPT-3.3.6.1 - Scheduler_001 (yield)

—————— WPT-1.18 - Scheduler

—————— WPT-2.47 - src/kernel/L1_kernel_scheduler.c
----SPC-3.1 - Scheduling Policy

------ TST-2.2.3.3 - Suspend a Running Task

———————— WPT-3.3.3.3 - Suspend a Running Task

—————— TST-2.2.3.4 - Resume a Suspended Task

———————— WPT-3.3.3.4 - Resume a Suspended Task

------ WPT-2.45 - src/kernel/L1_kernel_resume_task_service.c
—————— WPT-2.51 - src/kernel/L1_kernel_suspend_task_service.c
—————— WPT-1.18 - Scheduler

—————— WPT-2.47 - src/kernel/L1_kernel_scheduler.c

Altreonic NV From Deep Space To Deep Sea Page 34

Trustworthy Systems Engineering with GoedelWorks 3

A unifying view on systems engineering

® © ® " weicome to GoedelWorks! x | [GoedelWorks

~1 [Z}PRU-1 (id-553): OpenComRTOS Qualificati
=1 (CNT-39) Deleted Entities
-1 [21 (CNT-40) Project Entities (8)

4 [7) (CNT-41) Project References (2)

- [21 (CNT-42) Project Requirements (18]
[Z)REQ-1 (id-873): Multtasking cag
=1 REQ-2 (id-872): Packet Switchin
[)REQ-3 (id-874): General Kernel
[Z)REQ-4 (id-868): ISR Services
=1 REQ-5 (id-869): Priority based pi
[1 REQ-6 (id-870): Context Switchil
=) REQ-7 (id-871): Transparent cor|
[REQ-8 (id-882): Formal Modellin
[=1REQ-9 (id-881): Application scal
[1 REQ-10 (id-880): Booting
=) REQ-11 (id-879): Processor and
) REQ-12 (id-1858): C

TST-2.2.6.2
Empty Ready-List (002)

SPC-3.1

=1 REQ-13 (id-886): Safety support
=] REQ-14 (id-885): Tracing and st
[Z1REQ-15 (id-884): Written in C

Priority based preemptive scheduling

Scheduling Policy

REQ-5 SPC-3

Scheduler).

=] REQ-16 (id-883): GoedelWorks |
[Z1REQ-17 (id-877): System Timer
=] REQ-18 (id-1099): Lists
+ [(CNT-43) Project Specifications (20)
+ [(CNT-44) Project Resources (10)
+ [(CNT-45) Project Work Packages (1
+ [(CNT-46) Project Work Products (6)
=] (CNT-47) Issues
[=1 (CNT-48) Change Requests

e0e
BOEB DR ON Q8 QR EHE S

SPC-3.3
Fifo scheduling

oncoa A

WPT-3.3.6.2
Empty Ready-List (002)

TST-2.2.3.3
Suspend a Running Task

TST-2.2.3.4
Resume a Suspended Task

WPT-2.45
src/kernel/L1_kernel_resume_task_service.c

/

WPT-2.51
src/kernel/L1_kernel_suspend_task_service.c

TST-2.2.6.1
Scheduler

WPT-1.18
Scheduler

WPT-2.47
src/kernel/L1_kernel_scheduler.c

TST-2.2.1.1.11
Test a Not Raised Event _NW

Logged in as:

A .dot dependency graph in Goedel Works

id-869.graphml - yEd

€ - C ff [ocr-gw.altreonic.com/#entity=id-869 D@ 2 =
Apps [GoedelWorks @ X webmailz) Battery PWR Google } Graphity [CADP |- TASTE & PDF Books [BJ Aptina Imaging e De Broglie-Bohm pi [Il] Internet Archive @) Sparx EA » (L] Other Bookmarks
[Entites | Giossary |(Query |[Administration || Change Log |
‘Enlilmie || search Resuts | \Sysxem ® 0873 @ |ie874 ® [id868 @ ||i-869.]
n [¥] Navigation tree Is locked REQ-5 (id-869): Priority based preemptive scheduling (Approved) Changelog Review Comments Dependency Tree Precedence Tree
© Tree View
E - [Z1REQ-5 (id-869): Priority based preemptive scheduling
| [21 System (ocr-gw.altreonic.com) + [%) SPC-3 (id-567): Scheduler (3)
[=1 (CNT-1) DELETED PROCESSES
41 [%) (CNT-2) DELETED PROJECTS (1) © Node View
+) (CNT-3) PROCESSES (1) Graph Depth: [3 /[Structural Links [Associative Links | Forest |[PNG | SVG Graph Direction: [Left to Rignt v]| Texttree Exportas GRAPHML Download image
-1 [21 (CNT-4) PROJECTS (1)

eric.verhulst ¥ @ Logou!

e
000 %) Structure View ¥ x | Yid 1. } avE
Search | | [Text &
v [Graph
REQ-5 Priority based preemptive scheduling
SPC-3 Scheduler = A
SPC-3.1 Scheduling Policy
SPC-3.2 Priority based scheduling Resume a Suspended Task Resume a Suspended Task
SPC-3.3 Fifo scheduling — T e
TST-2.2.1.1.11 Test a Not Raised Event _NW —>i Scheduling Policy suspend a Running Task
TST-2.2.1.1.4 Raise a Raised Event _WT
TST-2.2.1.1.7 Test synchronization in a Raised Event
TST-2.2.1.1.9 Test a Not Raised Event _WT
TST-2.2.3.3 Suspend a Running Task TST-2.2.6.1 ‘I WPT-3.3.6.1
TST-2.2.3.4 Resume a Suspended Task Lot) B AR
TST-2.2.6.1 Scheduler —)’ WPT-1.18
TST-2.2.6.2 Empty Ready-List (002) Scheduler
WPT-1.18 Scheduler S g "
WPT-2.45 src/kernel/L1_kernel_resume_task_service.c ”@ :—
WPT-2.47 src/kernel/L1_kernel_scheduler.c REQ-5 SPC-3 - 33 r " 33114
WPT-2.51 src/kernel/L1_kernel_suspend_task_service.c Priority based preemptive schedulin Scheduler Raise a Raised Event WT. Raise a Raised Event WT
WPT-2.53 include/kernel/L1_task_api.h -
1111 Testa Not Raised Event_NW priori bi"sifs-zhe -
1.1.4 Raise a Raised Event _WT L .
1.1.7 Test synchronization in a Raised Event >
1.1.9 Test a Not Raised Event _WT Test a Not Raised Event _NW Test a Not Raised Event _NW
3.3 Suspend a Running Task

WPT-3.3.3.4 Resume a Suspended Task
WPT-3.3.6.1 Scheduler_001 (yield)
WPT-3.3.6.2 Empty Ready-List (002)

> [ISI=2E2ENIEg]
Test a Not Raised Event WT

WPT-3.3.1.1.9
Test a Not Raised Event _WT

TST-2.2.6.

62
| Empty Ready-List (002)

WPT-3.3.6.2
Empty Ready-List (002)

A dependency graph exported to a graphml viewer/editor

Altreonic NV

From Deep Space To Deep Sea

Page 35

TST-2.2.1.1.7 WPT-3.3.1.1.7
Test synchronization in a Raised Event Test synchronization in a Raised Event

Trustworthy Systems Engineering with GoedelWorks 3

4.2. Terminology and its conventions in GoedelWorks

The attentive reader, especially when familiar with existing standards might notice some distinct differences
between the GoedelWorks terminology and the one used in e.g. safety and systems engineering standards.
For example most standards will not use the term specification and only talk about requirements. Some
standards differentiate them by using qualifiers. E.g. DO-178, the avionic standard speaks of High Level
Requirements (HLR) and Low Level Requirements (LLR), the latter often been associated with the details of
the implementation. Some other standards like ECCS (the ESA standard) mix the two. Even if this can be
explained (Specifications evolve by decomposition and refinement from Requirements), it leads to
confusion because as we have seen, we need clear and unambiguous concepts to communicate. Another
example is the use of the terms verification, testing and validation. These are also very often used
differently depending on the standard and the context, often resulting in confusion.

Solving this issue is not trivial. One has essentially two options. The first option is to invent a new term. This
has as drawback that it has to be created and introduced (often people use acronyms for achieving this).
The second option is to use a term in natural language that exists with a close enough generally accepted
meaning. This is the option adopted in GoedelWorks. In order to reduce the possible confusion, each of
these GoedelWorks key terms is capitalised and in the portal a standardised acronym is used. See Annex for
a detailed list.

In the table below one can find the specific terminology used in GoedelWorks. It covers the main Entities.
Further on we will see that a GoedelWorks Project consists of a number of Works Packages, as instances of
a prescribed Process Steps. A Work Package has itself a number of Artefacts that constitute the evidence for
the performed Activities. These also serve as inputs to the next Tasks that need to be done. Following the
dependency relationships, they also need to be approved before the following Tasks can be approved.

Altreonic NV From Deep Space To Deep Sea Page 36

Term

System

Mission

Requirement

Specification

Reference

Process

Project

Work Package

Work Product

Artefact

Resource

Role

Planning

Designing

Altreonic NV

Trustworthy Systems Engineering with GoedelWorks 3

GoedelWorks’ specific Terminology
Definition

The System is the Entity under consideration as the object of the Systems
Engineering activities. This is called the System under development. It interacts
with two other Systems. The environment is the external System in which the
System will be placed and the user or operator, with whom the System fulfills its
mission.

The Mission is the top level Requirement for which the System is being
developed.

A Requirement is any statement by any stakeholder that is related to the mission
of the System.

A Specification is a mapping of the Requirements into a verifiable Requirement,
often by quantifying and qualifying the Requirement statements. A Specification
must have a “Test Case” else it might be questionable if it can be verified that the
Developed Entity meets its Specifications.

A Reference is any relevant input or information that is generic but is necessary or
useful to carry out the engineering Project or Process. Often it will be external to
the Project but related to it.

A Process is a well defined number of Steps and Activities that define how a
Project has to be executed. It also defines the Artefacts and Work Products that
must be delivered allowing Verification and Validation of the Project execution.
This can be used for Qualification of Certification of the System developed.

A Project encompasses all activities, including those required by the Process
agreed upon, that contribute to the realization of the System under development.
A Project is composed of a number of Work Packages, instances of the Steps
defined in the Process.

A Work Package is a set of Activities that are related to the development of the
Work Products. A Work Packages consists of Planning, Designing, Development,
Verification, Test, Integration, Validation and Review Activities. Work Packages
require Specifications and Resources to be able to execute the activities.

A Work Product is the end-result of a Work Package and is one the concrete
Entities that need to be developed to develop the Systems as a whole.

An Artefact is an Entity that is produced along side the Work Product as a piece of
evidence that the Work Product and hence the whole system meets its
Requirements.

A Resource is an Entity that constitutes a Requirement for executing Work
Package Activities. The main ones are human Resources qualified to take up a
specific Role in the Project. Other Resources are most of the time material in
nature.

A Role is a human Resource meeting specific Requirements in terms of
Capabilities as defined by the Process Specifications.

Planning defines how and when the available Resources should be used to
execute a given Activity.

The Design Activity defines how the system will be architecturally structured and

how the different Activities contribute to it.
Page 37

From Deep Space To Deep Sea

Development

Verification

Testing

Integration

Validation

Reviewing

Model

Item

Interaction

Link

Trustworthy Systems Engineering with GoedelWorks 3

The Development Activity is the activity that actually develops or implements the
Work Products.

A Verification Activity is the activity that verifies that the development was done
according to the agreed upon Process Specifications.

A Test Activity is the activity that verifies that the developed and verified Work
Products meet their approved Specifications.

An Integration Activity combines the composing Items and Work Products into a
larger System or subsystem component.

A Validation Activity is the activity that after integration of all System components
and Work Products validates that the tested Work Products meet the original and
approved Requirements.

A Review activity is a confirmation measure that confirms, best independently,
that an Activity was done correctly and that its approval was justified. It also acts
an extra feedback loop to detect oversights.

A Model is a Work Product developed in a Systems engineering Project during the
development activities. The finally approved System is considered as an
implementation Model.

An Item is a generic System component, making abstraction of the
implementation.

An Interaction is an Entity that creates a structural connection between one or
more System Items.

A Link is a relationship between one or more Entities. We distinguish between
associative links (e.g. dependency relationships), decomposition links and process
flow links (defining a partial order in time).

4.3. Process Steps, instantiated as Work Packages in a concrete Project

As we will see further, in GoedelWorks we consider that a System is the result of a specific Project whereby
a specific Process is followed. In a Process definition we will find a typical succession of Steps that
generically define a partial order of activities. Examples of such Process are the ASIL flow (single V-model) or
DO-178 (double V-model). In a concrete organisation these will have combined with organisation specific
Steps, procedures and guidelines.

In a concrete Project, these Process Steps are instantiated as concrete Work Packages. In GoedelWorks the
Work Package has been structured using a standardised template, a partial order of Work Package Activities
and associated Artefacts. One could consider these as the micro steps of a small iterative V-model.

While the terminology was chosen to be generic (and applicable to almost any Process Step), it more or less
reflects a typical Development Work Package as this is considered as the core of an engineering Project.

In the table below, we have listed the standardised Activities and their composing phases.

Altreonic NV

From Deep Space To Deep Sea Page 38

Trustworthy Systems Engineering with GoedelWorks 3

Work package activities

Kick-Off The starting moment for a Work Package. The Kick-Off meeting is a team event whereby
the objectives of the Work Package are clearly identified, the Process to be followed
defined, Resources assigned and approval is obtained from the stakeholders (external as
well as internal to the Work Package).

Planning This Activity defines how and when the Resources will be used to meet the Project’s
objectives. It assigns the Resources and defines a planning in time.

Designing This activity defines how the Work Product will be structured. It defines for example the
architecture, lay-out, algorithms, etc. One could say that it develops Models without
executing them. All the Design Models should support the Development.

Developing This Activity consists of the actual work to be done. It is the core activity supported by all
other activities to reach the objectives in a trustworthy way. The end results are Models
(simulation, formal, etc.) with the Implementation Model being the concrete goal of the
Project. It focuses on developing “the right thing”. In the software domain people might
call this activity “Implementation” but generally speaking Development is the term used
across multiple domains.

Verification This Activity verifies that the development was done as prescribed according to the
Process Requirements and Specifications. It focuses on developing “the right way”.

Testing This Activity consists of verifying that the developed Items meet their functional and non-
functional Specifications. Testing is likely to be repeated after integration at the system
level. The resulting measurements are then called “Characteristics”.

Integration This Activity combines the composing Items of the developed Work Products into a single
entity (that can be a system, sub-system or component). It can be seen as part of
Development but the focus is here on the interactions and connections between the
ltems.

Validation This Activity will verify that the Work Product’s Requirements are met. After Integration,
the focus is on verifying that the “right system” was developed. The measured
characteristics might differ from the Specifications and a decision is to be made to
approve the Work Products on basis of the intended Requirements.

Review This Activity will combine the results of all Activities and conduct a review seeking
oversights and residual issues. In principle, Review activities are done during any activity
and preferably involve independence and peer review as often prescribed in the Process
Requirements and mandated by the standard to comply with.

Release When all Activities and their corresponding evidence have been approved, the Work
Products can be released, for example to transfer them to the production facilities. At this
stage, the Work Products and their evidence will be “frozen” and enter strict configuration
management.

Altreonic NV From Deep Space To Deep Sea Page 39

Trustworthy Systems Engineering with GoedelWorks 3

Each of these Activities can further be divided in four main phases:
Activity stages

Planning This phase extracts and refines the planning done at the Work Package level into a
planning specific for the Activity.

Doing The actual work to be done in the Activity.

Documenting A documented record of what was done in the Activity. It must be complete in the
sense that any element that has or had a possible impact on the resulting Work
Product must be traceable and identifiable.

Confirmation Each activity needs to be reviewed for residual issues and oversights. Often dictated
by Process Requirements, reviews are best done by independent people. Their goal is
to confirm in an independent way that the objectives were met. It also serves as
additional feedback that seek to find oversights.

The Activities hence produce two types of outputs. The actual Items developed are called Work Products
whereas the supporting evidence are called Artefacts. In trustworthy (and hence certifiable) Systems
Engineering any product comes with the supporting evidence (which can be seen as a contract) that it
meets its Requirements and Specifications and that it was developed according to the Required and
Specified Process (that is meant to assure the trustworthiness of the Work Products).

The final steps are to transfer the development to production. A good Systems engineering Project will have
been designed with production and deployment issues in mind. This affects quality and it also affects the
(financial) bottom-line. During the life time of a System (or product) good Engineering will have anticipated
maintenance and even upgrading to assure that the System keeps performing at its specified level. Finally,
when the System will be taken out of service, it will need to be disposed off. Modern, environmentally
friendly Engineering will have thought about that as well.

4.4. Inthe end, any project is iterative

A superficial reading of the preceding chapters might raise the question if what we describe is a classical
waterfall or V-Model for the engineering Process. This means that the different activities follow a strict
linear order in time (Requirements-Specifications-Work Packages- etc. - Work Products). This is a wrong
view and not desirable. First of all in a Systems engineering Project nothing is static unless frozen or
approved. Most of the time Entities will be "in work". Secondly, most Systems engineering Projects will need
to deliver hundreds or thousands of Work Products and concurrent engineering is almost a must. Thirdly,
Systems engineering is an iterative Process. Requirements might have resulted in unrealistic Specifications
or while working on the implementation, new issues will have been discovered and therefore Specifications
adapted. Therefore, the classical V-Model is in reality an interconnected composition of multiple V-Models,
essentially one for each Work Product. This applies as well for the Process Artefacts (e.g. documents and
reports) as for the Project Work Products (e.g. the System Models and Entities developed).

To bring order in its execution Systems engineering works with "states" for all Project Entities. Each Entity
(for example a Specification) starts his life when it is created. We call this state 'Defined". Once defined, it
has to be completed and worked upon. We call this state "In Work". At some point in time, the Specification
will be frozen, we call this "Frozen for Approval". If the Specification is then approved, we call this
"Approved". At this moment anyone making any change to the Specification results in the Specification
being put to "In Work" again.

Why is this important? Configuration management is related to the association and structural links. For
example Specifications are input to the Test Tasks. If the Specifications are not frozen and approved, testing
will have to restart whenever the Specifications are changed. What results is that all Work Products can only

Altreonic NV From Deep Space To Deep Sea Page 40

Trustworthy Systems Engineering with GoedelWorks 3

be approved if all preceding Entities have been approved. This defines the final, approved System
configuration. The links automatically create a chain of approval events that synchronise the Project at the
state transitions to "Approved", hence a partial order in time. As long as everything is not "approved" work
can proceed in parallel, provided there is not a dependency. This also shows why a modular and concurrent
architecture is beneficial. Not only does it promote concurrent and iterative engineering, it will also be more
resilient as errors (and faults) will have less global impact.

GoedelWorks handles the state transitions using the following rules:
e No Entity can be approved unless all its preceding Entities have been approved.
e No Entity can be approved unless all its composing structural Entities have been approved.

This is illustrated with the following screenshot whereby invoking the edit mode on an Approved entity
triggers a warning.

Confirm

| This Entity was APPROVED. By editing it, its state as well as the state of all depending Entities will go back to IN WORK. Are you sure?

OK Cancel

4.5. Systems Engineering as a collection of Views

The reader might be surprised that most of Systems Engineering can be described with only a handful of
types of Entities and 2 types of relationships. This is the result of formalisation work whereby a hierarchy of
meta-Models, Models and specific instances was further refined and grouped in an orthogonal way. The
result was a concrete Systems Grammar.

What makes Systems Engineering confusing is that several views on the System are simultaneously present
and this often results in different terminologies in the natural language domain.

In the Requirements and Specification phase, the subject of interest is a mostly related to properties of the
System. As this should be done before an implementation (a System Model with its Entities) has been
selected, the difficulty is that one has to think abstractly. Certainly for the HARA phase this is a challenge as
one has to think about failure cases that should not happen at all (but eventually they will).

In the development phase, the Specifications will have been mapped onto Models and their Entities. This is
an architectural view.

In the planning phase, the attention shifts to Resource planning with milestones and deliverables.

The most confusing is perhaps that before a trustworthy Systems engineering Process can proceed, the
methodology must be defined and concretely this means that the Process is defined. Developing a Process
is a Project in itself. It will follow a similar Process as the one it will develop, although more on an intuitive
base because there is not standard Process defined. Process Requirements come from many stakeholders
through external and internal standards and regulations. They have a societal context, for example because
safety and security related risks have to be mitigated by law and certification will often be a legal
Requirement before the System can be put in service or the product can be commercialised. While these
standards speak of Work Products, these are actually Requirements and Specifications for the development
Projects. If a specific organisation has adopted such a standard based Process, it will likely have developed
template versions to reduce the administrative and management burden on the engineering itself. Hence,
we see that a Work Product like e.g. a test plan will morph from a Reference into a Process Requirement,
into a Process Specification, into a template and finally into a specific test plan resulting in a test report.
Similarly, a component procured for the execution of a Project, might have followed a similar path. In each
of these steps is likely to be given different names.

Altreonic NV From Deep Space To Deep Sea Page 41

Trustworthy Systems Engineering with GoedelWorks 3

The result is that a System under development when approved and released for production is more than
the System itself. It is the result of all the different views combined. As trustworthiness and quality are long
term issues, it shows the importance of traceability. It also shows how this is embedded in the culture of
the organisation, the region, the society and the education that people receive.

Altreonic NV From Deep Space To Deep Sea Page 42

Trustworthy Systems Engineering with GoedelWorks 3

5. Description of the GoedelWorks Environment

In this chapter we describe the GoedelWorks environment. Based on a unifying systems grammar, it
supports defining Processes, Projects and Work Plans in a traceable way so that the evidence (as Artefacts)
remains linked with the Work Products, facilitating Qualification and Certification.

5.1. Principles of operation

The GoedelWorks environment is composed of a server program that manages all the data in a repository
and manages the interaction with the users, who use a client software through a web browser. User can
create, modify and delete entities, either belonging to a defined Process or a defined Project.

® ©® [coedeiworks 2
€« C f [} ocr-gw.altreonic.com/#entity=id-921 DA =
2% Apps | GoedelWorks @ K Webmail2 @ Battery PWR [EJ Google }} Graphity B cADP TASTE & PDF Books [B) Aptina Imaging ToW De Broglie-Bohm pii [iil] Internet Archive » (L] Other Bookmarks
Entities Glossary Query Administration | Change Log

Entity Tree | Search Results System x| id-921 x

u ./ Navigation tree is locked ‘DVT—Z (id-921): Development (Approved)| Changelog Review Comments Dependency Tree Precedence Tree

S EditMode (L] Save [Access Control List (L] Change Navigation Parent [=] Generate Doxygen Comment

~ Workflow
(= (CNT-4) PROJECTS (1)

- (= PRJ-1 (id-553): OpenComRTOS C

State |Approved

(= (CNT-39) Deleted Entities ~ Content

(= (CNT-40) Project Entities (8) Name: Development Start: 22 August2014 at 11:20 AM
+ (0 (CNT-41) Project Reference Deadline: 22 August2014 at 11:20 AM

+ 7 (CNT-42) Project Requirem ~ Description

+ () (CNT-43) Project Specificat @B T

+| () (CNT-44) Project Resource
~| (= (CNT-45) Project Work Pac
(= WP-1 (id-915): OpenCo 3. Apply all ch resulting from issues d
+ () (CNT-49) Planning /
+ () (CNT-56) Design Ac

- (= (CNT-50) Developm * Annotate Specifications in the source file where they are implemented.
* Create a Dependency Link from the Specification to the source file where it is implemented.

2. Analyse all detected issues resulting from Verification, Testing, Integration and Validation Activities.

ing the Verification, Testing, Integration and Validation Activities.

4. Maintain traceability between Specifications and Source Code:

(= DVTP-1 (id-620)
(= DVT-2 (id-921): 1 5. Report Specifications that are not traceable to source code or are fulfilled otherwise.
(= DVTRP-3 (id-92:
(= DVTRV-4 (id-92¢
(= DVTRR-5 (id-92:
+ [(CNT-51) Verificatiol Inputs
+ [0 (CNT-52) Testing Ac
+ [(CNT-53) Integratior
+ [(CNT-54) Validation
+ () (CNT-55) Review Ac

« Write a Report that contains a list of the Specifications that are not traceable to source code or are fulfilled otherwise.
« Provide feedback to the Design team about the sections of Source Code that do not have a Specification.

OpenComRTOS Source Code Version 1.6.

Project Specifications (in CNT-43).

Architectural design (WPT1 id-1019).

REF-1.2 (id-541) Version Management

REF-1.3 (id-543) Issue Handling

REF-14 (id-542) Coding Rules

Jira OpenComRTOS Project Page.

All issues recorded following Verification, Testing, Integration and Validation as recorded in the JIRA report OCR-1.6 tickets during qual.pdf.

+ () (CNT-48) Project Work Prot
(= (CNT-47) Issues

(= (ONTAR\ Channa Raniact

Loggedinas: eric.verhulst v @ Logout

A GoedelWorks screenshot of a Development Task Entity

Some principles apply:

e As a convention GoedelWorks Entities start with an uppercase letter, else the acronym will be
used.

e Each Entity receives a unique identifier upon its creation. This is for reasons of traceability.
e Entities are never physically deleted but moved to a Container with deleted entities.

e Onthe navigation tree, entities are grouped in Containers per type of Entity.

e The user can create dependency links as permitted by the System Grammar (see below).

e An Entity can be decomposed into sub-Entities.

e When being edited, a write-lock is automatically created and no other user is allowed to make
modifications. Reading is always allowed.

e Different users have access rights to an entity depending on the permissions that were set for
the his roles.

e Each change to an Entity is logged whereby the Entity receives a unique revision number.

Altreonic NV From Deep Space To Deep Sea Page 43

5.2.

Trustworthy Systems Engineering with GoedelWorks 3

Entities of the same type are grouped in Containers.

GoedelWorks is not document based but Entities can have documents (actually any file) as
attachments and the user can export Entities (or complete Projects and Processes) to a
timestamped hyperlinked html or pdf document.

Some entities can be 'linked' with version control systems, such as Subversion and Git. In these
cases the full content of the repository item (as well as the information about the revision
number in the version control system, the timestamp of the latest modification and the user
who did it) is copied to the GoedelWorks repository, so that it remains independent from
external repository. The user is also allowed to modify the document and send the
modifications to the version control system

Organisational functions of a GoedelWorks portal

Adopting a GoedelWorks portal brings many organisational functionalities together in a single environment.
We list some of the most important ones:

A GoedelWorks portal acts like a structured knowledge repository: while GoedelWorks offers the choice to
organise for example a Process or a Project according to its Systems Grammar, this is not a must. The user
can define small Containers (incomplete according to the System Grammar) and fill it with data about a
specific topic. However, he can gradually structure the data (for example by linking the data with references)
so that the data becomes a structured knowledge repository, easy to navigate and easy to share.

A GoedelWorks portal acts like a safe communication and collaboration platform: accessible
from any browser, teams can easily cooperate anywhere and anytime, while the data remains
consistent with its version managed at the central repository.

A GoedelWorks portal acts like an organisational set of guidelines: organisations can easily
define their internal processes and integrate them with standards based Processes they have to
follow for e.g. Qualification or Certification. When executing Projects, users can link their
Activities to the Process Specifications.

A GoedelWorks portal acts like a structured engineering environment, supporting a systematic
execution of (engineering and other) Projects. The Systems Grammar is gently enforced so that
the users automatically but incrementally define all the Project Entities and dependencies.
When Requirements change, executing an impact analysis is a matter of seconds to generate
the dependency tree.

A GoedelWorks portal allows to generate the evidence needed for Qualification and
Certification of engineered systems and products. While a Project is filled up with Entities,
dependency trees ensure that the Project can only be approved when all Activities, Work
Products and Artefacts are present and were approved in the right order. Moreover, as
GoedelWorks’ System Grammar acts like a domain independent meta-model, the Project can
often be used for Qualification or Certification across multiple domains.

Altreonic NV From Deep Space To Deep Sea Page 44

Trustworthy Systems Engineering with GoedelWorks 3

5.3. GoedelWorks Systems Grammar

5.3.1. Top level view

The diagram below illustrates the view in GoedelWorks that a System or Product is the result of a Project
that is executed by following a specified Process. The different Steps of a Process are often defined to be
followed in a relative order (but iteration is allowed). As such a Process can be domain and/or organisation
specific but generally independent of a specific Project. In a Project corresponding Works Packages are
executed as an instance of the Steps defined in a Process flow.

" GoedelWorks SYSTEM || PROCESS FLOW

System

Project Process

¥ i_v\r

Work Package
vV v v V¥

Release

}
]
I
|
I
I
|
:
= Step
|
|
]
I

|

— Step

|

Work Package

Top level view of the Systems Grammar in Goedel Works

The next diagram illustrates an abstraction of the Work Package internal Activities. For the sake of simplicity,
we ignored the blue decomposition links as they apply to any Entity and mainly clutter the diagram. It
illustrates how the Activities of a Work Package depend on Project Specifications derived by refinement and
decomposition from Project Requirements, itself possible pointing to external References.

Project_Work_Product
Process_Artefact Project_Work_Package
R e e A ﬁ I \
Y
Project_Resource | |Process_Specification Project_Artefact Project_Specification
A
Project_Requirement

A

[Project_Reference

Top level view of the Work Package inputs and outputs

Altreonic NV From Deep Space To Deep Sea Page 45

Trustworthy Systems Engineering with GoedelWorks 3

The WorksPackage also depends on Process Specifications and Project Resources. Part of these Resources
are Project template Artefacts (e.g. for the different reports). A Work Package hence produces Project Work

Products as well as the associated Project Artefacts, essentially the underlying evidence (often in the form
of a document or report) that the Work Package delivered what was specified.

5.3.1. View from inside a Work Package

The next diagram on the following page shows the Activities, Work Products and Artefacts seen from the
inside of a Work Package.

Everything starts with Planning, subsequently detailed for each type of Activity (Planning Design,
Development, Verification, Testing, Integration, Validation and Review). Each Activity then results in a
Report that is reviewed, first at the level of the Activity itself, and then at the level of the Work Package. The
latter steps acts as confirmation measures.

The GoedelWorks user has an interest in keeping the general dependency chain in his mind when
developing a Project. The Systems Grammar however does not impose a specific order of execution and
often a top-down approach will be adopted to meet in the middle with a bottom-up approach. A Project can
be finalised if two conditions are met:

¢ The dependency tree is complete and coherent.
e All Entities in the graph have been finalised and approved according to their dependencies.

e In practice, the latter statements mean that there must be at least a single path from any
Requirement to any Work Product and Artefact and that no Entity should be left unconnected.
The order of approval can only be top-down. For this reason, when starting a new Project, some
planning is helpful. If the initial grouping is well done, less effort will be needed to re-organise
the Project Entities to form a logical and coherent set.

Altreonic NV From Deep Space To Deep Sea Page 46

Trustworthy Systems Engineering with GoedelWorks 3

Project_Work_Package

Project_Resource

Project_Work_Product

Testing_Review
Confirmation_Review
Integration_Review

3 Validation_Review

Review_Report

Validation_Report [<

Work_Package_Review

=T

H
| :
»
H

Integration

Testing_Report [

Integration_Plan [«

—‘Verlﬂcatlon_" /i I<
—|Devel P _Review I“

Verification_Report

L
> Development_Report

> Process_Artefact I

}ID

Design_Report

Development_Plan

>

| Process_Specification |
I

=|Project_Specif“|cation' T

i Design | ¢

> Verification L

Altreonic NV

Project_Requirement |

Valldallon

Project_Reference

l

Y

> {Testing | Testlng

Review_Plan

Validation_Plan

| Work_Package_Planning

Testing_Plan

Verification_Plan
Work_Package_Plan

Design_Plan

esign_Review

Work_Package_Planning_Review |

From Deep Space To Deep Sea

Page 47

Trustworthy Systems Engineering with GoedelWorks 3

5.4. Top level View in a GoedelWorks portal

GoedelWorks can be run from any web browser, although it is recommended to use the latest versions and
to use a screen with a high resolution.
When opening the browser and entering the account name and password, the user will be presented with
the main GoedelWorks view. It has the following panes:
¢ The Entities view on the right.
e The navigation view on the left (called the Entity Tree).
e At the top several tabs are visible, top to bottom:
e Entities (normally open),
e Glossary, Query,
e Administration,
e Change Log
We will look at these more in detail in the next sections.

Altreonic NV From Deep Space To Deep Sea Page 48

Trustworthy Systems Engineering with GoedelWorks 3

5.4.1. Navigation tree view

The navigation tree panel allows the user to quickly navigate his portal. At the top level we see Containers
(CNT) for the deleted as well as the active defined Processes and Projects. As mentioned before, in a
GoedelWorks portal all Entities live forever, even when deleted and receive a unique identifier when being
created. The reason for this decision is to support life-time traceability as well as providing the capability to
review past decisions or to recover earlier versions of the entities.

Entity Tree | Search Results

ﬂ ./ Navigation tree is locked

- (= System (ocr-gw.altreonic.com)
(= (CNT-1) DELETED PROCESSES
-/ (= (CNT-2) DELETED PROJECTS (1)
+ ([PRJ-2 (id-20): OpenComRTOS - 1.6 (2)
+ [(CNT-3) PROCESSES (1)
- = (CNT-4) PROJECTS (1)
- (= PRJ-1 (id-553): OpenComRTOS Qualification (2)
(= (CNT-39) Deleted Entities
- (= (CNT-40) Project Entities (8)
+ [(CNT-41) Project References (2)
+ [(CNT-42) Project Requirements (18)
+ [(CNT-43) Project Specifications (20)
+ [(CNT-44) Project Resources (10)
- (= (CNT-45) Project Work Packages (1)
-/ (= WP-1 (id-915): OpenComRTOS Qualification Package Activities (8)
+ [(CNT-498) Planning Activities (4)
+ [(CNT-56) Design Activities (5)
+ [(CNT-50) Development Activities (5)
+ [(CNT-51) Verification Activities (5)
[0 (CNT-52) Testing Activities (5)
[(CNT-53) Integration Activities (5)
[(CNT-54) Validation Activities (5)
+ [(CNT-55) Review Activities (7)

+

+

+

+ [(CNT-46) Project Work Products (6)
(== (CNT-47) Issues
(== (CNT-48) Change Requests

A GoedelWorks screenshot of a navigation tree

Finally, a search function allows to filter a tree and display all the Entities containing the search string. In the
example below, the search string was “Port”.

Altreonic NV From Deep Space To Deep Sea Page 49

Trustworthy Systems Engineering with GoedelWorks 3

Entities Glossary Query Administration | Change Log

I Entity Tree 'Search Results:

'\ WPT-19.4 (id-10): L1_GetPacketFromPort_A (In Work)
WPT-19.13 (id-148): L1_PutPacketToPort_W (In Work)
WPT-19.10 (id-151): L1 _PutDataToPort_WT (In Work)
WPT-19.9 (id-152): L1_PutDataToPort_W (In Work)

5 WPT-19.12 (id-153): L1_PutPacketToPort_NW (In Work)

A WPT-19.11 (id-154): L1_PutPacketToPort_A (In Work)

t WPT-19.6 (id-155): L1 _GetPacketFromPort_W (In Work)

| WPT-19.5 (id-156): L1_GetPacketFromPort_NW (In Work)
WPT-19.8 (id-157): L1_PutDataToPort_NW (In Work)
WPT-19.7 (id-158): L1_GetPacketFromPort_WT (In Work)
1 WPT-19.14 (id-376): L1_PutPacketToPort_WT (In Work)

1| TST-2.2.1.10 (id-1645): Port (Approved)

" TST-2.2.1.10.2 (id-1647): Port_API_Test_002 (Approved)
| TST-2.2.1.10.3 (id-1648): Port_API_Test_003 (Approved)
s ART-9 (id-1742): WP Planning Review Report (Approved)

' SPC-6.2 (id-645): Dedicated input Port (Approved)

7 WPT-3.3.1.10 (id-1655): Port (Approved)

F wpT-3.3.1.10.8 (id-1663): Port_API_Test_008 (Approved)
1 WPT-3.3.1.10.9 (id-1664): Port_API_Test_009 (Approved)

| WPT-3.3.4.2 (id-1944): Waiting Packet in Task-Input-Port (002)
(Approved)

WPT-18 (id-6): include/kernel/hubs/L1_hub_port_api.h (In Work]

i WPT-18.1 (id-7): L1 _GetDataFromPort_NW (In Work)

WPT-19.2 (id-8): L1_GetDataFromPort_W (In Work)

WPT-3.2.2.5 (id-1177): Port (Approved)

. WPT-3.3.1.10.1 (id-1656): Port_API_Test_001 (Approved)
WPT-19.3 (id-9): L1_GetDataFromPort_WT (In Work)
TST-2.1.2.5 (id-1032): Port (Approved)

TST-2.1.2.5.1 (id-1136): Get-Interaction waits for complementan
interaction in the Port Waiting List (Approved)

TST-2.1.2.5.2 (id-1137): Put-Interaction waits for complementary
interaction in the Port Waiting List (Approved)

TST-2.1.2.5.3 (id-1138): Two Get-Interactions wait for
complementary interactions in the Port Waiting List (Approved)

TST-2.1.2.5.6 (id-1141): Two Put-Interactions wait for
complementary interactions in the Port Waiting List (Approved)

TST-2.2.1.10.1 (id-1646): Port_API_Test_001 (Approved)

Applying a search filter on the navigation tree

The Entity Containers are sorted according to the Systems Grammar. Note also that Entities receive a
navigation tree number. This number will change dynamically when the navigation tree is modified. Hence,
the user should not use it to refer to an Entity but use instead the e-id unique identifier. The latter is also
reflected in the url displayed in the address bar, for easy and quick reference as well as in the tab of the
Entity view. The navigation tree nodes will also display the number of composing Entities.

On the navigation tree, multiple operations are possible:

Locking the tree: his is to avoid that the user accidentally changes the position of an entity in
the navigation tree

Create new Entities or compositional sub-Entities.
Create a group of Entities (via a pop-up input table)
Set the Work Flow status for a complete branch.

Import data from a CSV file (table format).

Altreonic NV From Deep Space To Deep Sea Page 50

Trustworthy Systems Engineering with GoedelWorks 3
Internal model of a GoedelWorks Package

Create Multiple Entities of type: Project Work Product X
1 - Del Reset 'WPT-1(id-1019): Design Documents (22)
Name Development Status Version Type Release status
Not defined Not defined Not defined [object Object] Description must go in here
Not defined Not defined Not defined [object Object] Description must go in here
Not defined Not defined Not defined [object Object] Description must go in here
Not defined Not defined Not defined [object Object] Description must go in here
Not defined Not defined Not defined [object Object] Description must go in here
Not defined Not defined Not defined [object Object] Description must go in here
Not defined Not defined Not defined [object Object] Description must go in here
\E\ | cancel |
Tabular creation of Entities as a group
Change Branch Workflow State X
Root: |WPT-1 (id-1019): Design Documents (Approved)
New workflow state: Defined
The following entities will be modified
Al Entity Current State
4 WPT-1 (id-1019): Design Documents Approved
4 WPT-1.1 (id-891): Generic Hub Approved
4 WPT-1.2 (id-898): Semaphore Hub Approved
4 WPT-1.3 (id-899): FIFO Hub Approved
4 WPT-1.4 (id-900): Resource Hub Approved
4 WPT-1.5 (id-801): Memory Pool Hub Approved
Number of entities that will be modified: 23
| OK || Cancel |
Changing the Work Flow status of a group of Entities on the navigation tree
= WPT-1.11 (if-oom—aa Dbt i
Create sub project work product
= WPT-1.12 (i _)
Create multiple sub project work products
= WPT-1.13 (i
- | Set branch workflow state
= WPT-1.14 (i
= WPT-1.15 (i Export As » | PDF document
(= WPT-1.16 (i Import Data from » | HTML page
(= WPT-1.17 (i Delete CSVfile
i) - TOC
(= WPT-1.18 (id-1790): Scheduler
Exporting navigation tree Entities
Altreonic NV From Deep Space To Deep Sea Page 51

Trustworthy Systems Engineering with GoedelWorks 3

5.4.2. The entity pane view

GoedelWorks

€« C' f [1 ocr-gw.altreonic.com/#entity=id-904

i Apps] GoedelWorks @ K Webmaiz Battery PWR [Google } Graphity [CADP TASTE & POF Books [BJ Aptina Imaging T De Broglie-Bohm pii [l Internet Archive @) Sparx EA ['] Een relativerend ver &5 Funct Prog

D.Q L=

» (5] Other Bookmarks

Eniies | Glossary | Query | Administration | Change Log

Entity Tree | Search Results System x| id-904 x

u 7 Navigation tree is locked WPT-1.7 (id-904): Blackboard Hub (Approved) | Changelog Review Comments Dependency Tree Precedence Tree
JEditMode (1] Save [Access Control List (1] Change Navigation Parent [=] Generate Doxygen Comment

+ [(CNT-3) PROCESSES (1) - Workdow

((CNT-4) PROJECTS (1)
- = PRJ-1 (id-653): OpenComRTOS Qualification (2
(= (CNT-39) Deleted Enities
=/ (= (CNT-40) Project Entities (8)

State | Approved
~ Content
Name: Blackboard Hub Development Status: Ready for Design
Version: 1.6
+ (2) (CNT-41) Project References (2) Type:
+ (7) (CNT-42) Project Requirements (18)

() (CNT-43) Project Specifications (20)

Model
Model type: Architectural
~ Summary
+ (1) (CNT-44) Project Resources (10)

() (GNT-45) Project Work Packages (1)

peBd

(= (CNT-46) Project Work Products (6)
(= WPT-1 (id-1019): Design Documents
(= WPT-1.1 (id-891): Generic Hub
= WPT-12 (1d-898): Semaphore Hu

(= WPT-13 (id-899): FIFO Hub

(= WPT-1.4 (id-800): Resource Hub
(= WPT-1.5 (i6-901): Memory Pool K
(= WPT-1.6 (id-902): Data Event Hut
= WPT-1.7 (1d-904): Blackboard Hul
(= WPT-1.8 (id-897): Event Hub

(= WPT-19 (id-805): Port Hub

(= WPT-1.10 (1d-906): Packet Pool K
= WPT-1.11 (id-907): Memory Block

~ Description
peBd

Black Board Hub

SPC Blackboard state variables, SPC Copy a message from a Blackboard, SPC Copy a message to a Blackboard

The Black Board Hub represents a safc system wide variable, which can be written to by a Task and read by many Tasks. Figure 1 shows the principle diagram of the Black Board Hub.

(= WPT-1.12 (16-1781): Packets
(= WPT-1.13 (id-1782): Context Swit
(= WPT-1.14 (16-1783): Packet Routl

dataSize (0—DATA_SIZE}
messageNumber {0—N)

Hub State
Update Operation
Synchronisation
Operation
Synchronisation
Predicate

O

(= WPT-1.15 (id-1784): Link Driver F
(= WPT-1.16 (id-1788): Tasks
(= WPT-1.17 (1d-1789): Timers

(= WPT-1.18 (id-1790): Scheduler
(= WPT-1.19 (id-1791): Kemel

(= WPT-1.20 (id-1823): Priority Orde
(= WPT-1.21 (id-1832): Timer List

(= WPT-1.22 (1d-1833): Keyed List
) WPT-2 (jd-1021): Source Code (101)
+ () WPT-3 (id-1020): Test Code (4)

¥ () WPT-4 (id-1121): Formal Models (1)

Black Board (1-N)

Figure 1. Black Board Hub.

+ () WPT-5 (id-1853): Documentation (1)

WPT-6 (id-1992): Build System (27)
» Release status
(= (CNT-47) Issues

(= (CNT-48) Change Requests » Attachments (1)

ogged in as:

Entity view showing the btml editor pane

ericverhulst ¥ @ Logout

Most of the time, a GoedelWorks user will be working in the Entities view. In the main view, several

operations can be performed, such as
e Editing a Summary text, the description (in html or text),
e Leaving and reviewing comments
e Changing the position in the navigation tree.

e Reviewing the change log.

e Generating a dependency or most often the precedence tree. Such a tree can be in a graphical

or textual format or exported as a graphml file. The latter can be very handy to analyse a graph
in depth using an external graph editor (like Yed).

Defining the workflow state (any of: Defined, In Work, Frozen for Approval, Approved). Note
that when an Approved Entity is edited again, its state as well as the state of all dependent
Entities will be changed to “In Work” again.

Defining access rights and permissions depending on the role of the user. This can be defined
differently for any section of the items in a Navigation tree.

5.4.3. Query capability

Using the Query tab, the user can define and create his queries in his Project. A filter can also be applied to

the navigation tree to reduce the number of irrelevant entities.

Altreonic NV From Deep Space To Deep Sea

Page 52

Trustworthy Systems Engineering with GoedelWorks 3

Of particular interest is the capability to generate a status overview of a Project. A table is then generated
showing for example which Specifications are tested, implemented and what their workflow status is. The
resulting report can then be exported.

' al
@ GoedelWorks - Mozilla Firefox (== % |
File Edit View History Bookmarks Tools Help
®) Connecting... x \+ .
€ @ 192168.184.240/#entity=id-9831 e || Q search ¥ A w A g e - B e & =
=
Entities Glossary Query Administration Change Log
Entity Tree Search Results Reporting Results - CNT-1716
Navigation tree is v| Implemented | [v] Tested | [v] Strictmode | [] Relaxedlinks | Select~ | ExportasCSVw | % Update contents
unlocked Entity - Tested Implemented Status Children Tested Implemented
Find Entities + SPC-1 (id-14822): Packet
S NV T Switching Architecture (9) fatse fatne; Approved ° 5 5
+ [T1(CNT-1039; +/ SPC-2 (jd-14839): Kernel — = p— o . ;
> fcj(CNT-1040' Functionality (8)
+ ﬁ(CNT-‘IO‘H: +/ SPC-3 (id-15215): Scheduler (3) true false Approved 3 3 2
+ [PI(CNT-1042, (52?“ (0152205 Context Switch true true Approved 2 2 2
+1 [®](CNT-1043
+SPC-5 (id-15210). Communication fal fal A ed 8 1 1
+ [](CNT-1044; Layer (8) = = perov
+ [F1(CNT-1045,_ [+ ?:,?: ;;;1‘;93?) Link Driver = = Approvest = = .
-1 [Z1(CNT-1046'
.{ [*1CHR-1 +1 SPC-7 (id-14834): Scalsbility (5) true false Approved 5 0 0
‘ ﬁ CHR-2 | SPC-8 (id-14730): Booting false false Approved L] 0 0
- ﬁ CHR-3 1 + SPC-9 (id-15680): Performance (5) false false Approved 5 4 0
- [Z1CHFR \ +| SPC-10 (id-15776): Ssfety (7) false false Approved 7 3 2
D(+ SPC-11 (id-15769): Tracer and true false Approved 2 2 0
ﬁ ¢ Debugger (2)
— SPC-12 (id-15770): Written in C false false Approved 0 0 0
+ [T1PRJ-3 (id-9845): S)
SPC-12 (id-15052): GoedelWorks false false Approved 0 0 0
- EIPRI-4 (1-15583) | 4 |0 SPC-14 (id-15849): System Ti
2 id- : System Timer
* D (CNT—1717) De @ true false Approved 3 1 1
-1 =1 (CNT-1713) Pri + SPC-15 (id-15579): Memory tue true Approved 4 ; ;
4 r—-’ﬁ (CNT—1714: Msanagement (1)
4] (CNT-1715 +| SPC-16 (id-14820): Lists (3) true false Approved 3 3 0
i + [(CNT-1716 +1 SPC-17 (id-15717): Hubs (11) true false Approved 1 12 0
+ [F1(CNT-1709; PR (AR S true false Approved 18 18 14
L f:[(CNT-1710; Specifications (16)
o _] + SPC-19 (id-15171): Formal o = Aoproved a 0 0
+ [T1(CNT-1711) Modelling (2) ae ae pprov
“1(CNT-1712] ; : icati
==) +1 SPC-20 (id-15272): Application e e A 14 13 12
D (CNT-1707'— Programmer Interface (14)
< m_ | »
Loggedinas: root v @ Logout
- _)

Generated status report according to the links between the Entities

Altreonic NV From Deep Space To Deep Sea Page 53

Trustworthy Systems Engineering with GoedelWorks 3

5.4.4. GANTT chart

GoedelWorks has the capability to generate GANTT charts showing the planned use of Resources and
planned execution in time of Work Packages and their Activities. Note however that this function does not
calculate any scheduling. It displays the planned execution in time based on the starting and termination
times as entered by the portal users.

System ® id-6988

WP-1 (id-6988): Data Logger (Defined) Planning Gantt Chart Changelog Review Comments Dependency Tree Precedence Tree

Max depth: 0 s
(0 for max depth)
[+ —)
Work Package
WP-1 (id-6988): Data Logger (Defined)
Planning

PLA-1 (id-6989): Work Package Planning (Defined)

WPPR-3 (id-6991): Work Package Planning Review (Defined)
Design

DS-2 (id-6994): Design (Defined)

DSRV-4 (id-6996): Design Review (Defined)
Development

DVT-2 (id-6999): Development (Defined)

DVTRV-4 (id-7001): Development Review (Defined)
Verification

VET-2 (id-7004): Verification (Defined)

VETRV-4 (id-7006): Verification Review (Defined)
Testing

TST-2 (id-7009): Testing (Defined)

TSTRV-4 (id-7011): Testing Review (Defined)
Integration

INT-2 (id-7014): Integration (Defined)

INTRV-4 (id-7016): Integration Review (Defined)
Validation

VAL-2 (id-7019): Validation (Defined)

VALRV-4 (id-7021): Validation Review (Defined)
Review

RVW-2 (id-7024): Review (Defined)

RVWCNF-4 (id-7026): Confirmation Review (Defined)

WPR-6 (id-7028): Work Package Review (Defined)

Altreonic NV

Year 2015
April
of May of 2015 June of 2015 July of 2015
2015

[] 62days, 496 hours

[] 7 days, 56 hours
] 6 days, 48 hours
(] 10 days, 80 hours
[12 days, 96 hours
| E— R
] 5days, 40 hours
] 9days 72hours

] 7 days, 56 hours

Gantt chart displaying Activity timelines

From Deep Space To Deep Sea Page 54

Trustworthy Systems Engineering with GoedelWorks 3
5.4.5. Change Log

® ® GoedelWorks X E
€« C f [} ocr-gw.altreonic.com/#entity=id-891 DI OR =
i Apps [GoedeWorks @ K Webmailz M Battery PWR [Google } Graphity B caDP TASTE & PDF Books [BJ Aptina Imaging TeR De Broglie-Bohm pi Internet Archive » (1] Other Bookmarks
Entities Glossary Query Administration | Change Log
Entity Tree | Search Results System x| id-891 x
n ./ Navigation tree is locked WPT-1.1 (id-891): Generic Hub (Approved) | Changelog | Review Comments Dependency Tree Precedence Tree
Page :1 10 Previous Next Openin Text Format Refresh
+) (UNI1-4d) Froject Work rackages (1) » Group operation on 01-06-2015-15:28:45 by eric.verhulst (r12738)

(= (CNT-46) Project Work Products (6)
(= WPT-1 (id-1019): Design Documents
(= WPT-1.1 (id-891): Generic Hub
(= WPT-1.2 (id-898): Semaphore HL
WPT-1.3 (id-899): FIFO Hub » Group operation on 11-02-2015-17:50:48 by eric.verhulst (r12632)

» Group operation on 26-02-2015-15:41:36 by eric.verhulst (r12737)

» Group operation on 23-02-2015-10:32:35 by eric.verhulst (r12704)

&
(> WPT-1.4 (id-900): Resource Hub

. » Entity id-891 modified on 10-09-2014-11:52:13 by antonio.ramos (r8453)
(= WPT-1.5 (id-901): Memory Pool +

(= WPT-1.6 (id-902): Data Event Hu ~ Entity id-891 modified on 07-09-2014-20:46:57 by antonio.ramos (r7866)

(= WPT-1.7 (id-804): Blackboard Hu After Before
(= WPT-1.8 (id-897): Event Hub Model Type: Architectural Model Type: Architectural

(= WPT-1.9 (id-805): Port Hub Type: Model Type: Model

(= WPT-1.10 (id-908): Packet Pool » Summary » Summary

(= WPT-1.11 (id-907): Memory Bloci » Description » Description

(= WPT-1.12 (id-1781): Packets
» Link created on 07-09-2014-20:46:56 by antonio.ramos (r7865)
(= WPT-1.13 (id-1782): Context Swi ! on 07:09-2014-20 Y ardordo.ramos (17866)

& WPT-1.14 (id-1783): Packet Rout » Link created on 07-09-2014-20:36:58 by antonio.ramos (r7862)
(= WPT-1.15 (id-1784): Link Driver F

(= WPT-1.16 (id-1788): Tasks ~ Entity id-891 modified on 07-09-2014-20:35:39 by antonio.ramos (r7861)
= WPT-1.17 (id-1789): Timers After Before
(= WPT-1.18 (id-1790): Scheduler Model Type: Architectural Model Type: Architectural
Type: Model Type: Model
(= WPT-1.18 (id-1791): Kernel
= (i) v Summary v Summary
(& WPT-1.20 (id-1823): Priority Orde This provides the it for the Generic Hub in This provides the i for the Generic Hub in
(= WPT-1.21 (id-1832): Timer List OpenComRTOS. OpenComRTOS.
(= WPT-1.22 (id-1833): Keyed List ~ Description ~ Description
() WPT-2 (id-1021): Source Code (101)
#I (7 WPT-3 (id-1020): Test Code (4) Generic Hub Generic Hub
+ () WPT-4 (id-1121): Formal Models (1)
. . Logical View of the Generic Hub Logical View of the Generic Hub
+ () WPT-5 (id-1853): Documentation (1) 9 9
SPC Reachability Of Entities, SPC System-Wide IDs, SPC Return Packets SPC Reachability Of Entities, SPC System-Wide IDs, SPC Return Packets
+ () WPT-6 (id-1992): Build System (27) Tasks interact with Hubs by exchanging Packets. Hubs are Entities with a system-wide Tasks interact with Hubs by exchanging Packets. Hubs are Entities with a system-wide
=, (CNT-47) Issues unique ID that can be accessed by any Task in the System. An interaction starts when a unique ID that can be accessed by any Task in the System. An interaction starts when a
= task sends a Packet 10 a Hub. This Packet is known as the Request-Packet. The task sends a Packet 10 a Hub. This Packet is known as the Request-Packet. The interaction
(= (CNT-48) Change Requests interaction finishes when the Hub returns Packet to the Task that requested the interaction. | finishes when the Hub returns Packet to the Task that requested the interaction. This packet
This packet is known as the Return-Packet. A request that is not ready to be processed, is known as the Return-Packet. A request that is not ready 1o be processed, may waitin a
y ly
may wait in a Hub until it can be completed. There are three types of interactions: Put- Hub until it can be completed. There are three types of interactions: Put-Interaction, Get-

Loggedinas: eric.verhulst ¥ @ Logout

Change log entry of an Entity

Changes to entities are recorded at the Entity level (where revert operations are possible) as well as
globally displayed at the portal’s level. Each entry in the log will record the entities content before and after
the change was applied. This can BE very helpful when analysing later on what changes were applied and
why they were applied, as well as who was the user making the changes.

As a general principle, no information is ever physically deleted on a portal (the identifier is incremented
whenever an Entity is created). This way, all design decisions are recorded for future reference and
configuration management is unambiguous. Even deleted entities remain in the system in a dedicated
Container.

5.4.6. Version and configuration management in GoedelWorks
GoedelWorks provides life time support for version and configuration management for all Entities in a
portal. This is achieved by following following main principles:

e No Entity is ever physically deleted. When deleted it is moved to a Deleted Entities Container so
that it always can be recovered and reviewed.

o Every Entity receives a unique identifier upon creation. No identifiers are reused.
e Every change is recorded as a unique timestamped event recorded as a version number
¢ Every Entity has an associated change log

Using these principles it is possible to track the version and changes made and even to revert changes to
any Entity, whether Process of Project related. This is illustrated in the following diagram.

Altreonic NV From Deep Space To Deep Sea Page 55

Trustworthy Systems Engineering with GoedelWorks 3

As such, one must remember that contrary to for example a software repository, what constitutes a
coherent set of repository items is not just a collection of files in folders but a dependency graph.

©

R1.0 [1] ——

R1.1[4] =——

Local Entity History

©

S1.0 [2] ——

R1.1[6] —

S1.0 [6] —+—

©

T1.0 [3] ——

T1.1([S5] ——

R1.2 [10]—

$1.0 [7] —+—

T11([7] ——

S1.1 [8] —+—

S1.2 [11] ——

T1.2[9] ——

T1.3[12]

A

Global Timeline

@

——Ta[1]
——Tb[2]
—t—Tc [3]
—t+—Td [4]
—t—Te [5]
——Tf[6]
—T—Tgl7]
—t—Th[8]
——Ti[9]
——Ti[10]
——Tk[11]

—1—Ti[12]

A4

Recording of Entity versions using a global unique identifier of changes

Entities can be decomposed and linked to multiple other Entities, Process as well as Project related, which
also affects the capability to reverse changes, especially later on. This has an impact on how we can define
baseline configurations. The latter must be a coherent set of Entities (in principle each the being the most
up to date ones) as well as coherent set of links between the Entities. Therefore, establishing baseline
configurations is only allowed at the level of a Process or a Project, as illustrated below:

Using this configuration capability, one can define for example product families.

Baseline

V1.0

[\

V2.0

Project
Entities
| —7]
PRJ-1
Qual Pack
\
Deleted
Entities
PRO-1
Company
Process

Altreonic NV

Configurations
PRO-1 4
Project
P >
Pre > (;ompany > Entities
rocess
A \
|
| Deleted
| Entities
|
|
|
|
|
|
|
|
|
| Baseline
| Configurations
|
1 e
\ PRJ-1 Project
>
Projece > Qual Pack > Entities
Deleted

Entities

Configuration management in Goedel Works

From Deep Space To Deep Sea

Page 56

Trustworthy Systems Engineering with GoedelWorks 3

5.4.7. Productivity supporting features

A GoedelWorks portal also has a growing of additional functions that increase the productivity of the user,
reducing the number of clicks to achieve the same effect. We list a few:

“Derive” operation: As Specifications are derived from Requirements, Users can, for instance, create
new specifications based on a selected requirement. A new specification is shown in the editor. The
initial values of the fields are copied from the selected requirement. When the entity is saved a
dependency link is created. From a Specification a Work Product and a Work Package can be
generated.

“Purge”: If an authorised user decides that a deleted entity (or all the deleted entities in a container
for deleted entities) should be completely removed from the system, then he is free to wipe them.
This process will remove the data on the database as well as any attachments. A message is kept in
the log though, that the entity was purged.

Snapshot feature: the user can create a snapshot of a Project/Process. A snapshot is a self-contained
zip file containing the PDF/HTML representation of the entity and copies of any attachments and
version control system items (in case of folders, the complete content of the folder is copied,
recursively)

Fill reports: the user can ask the system to pre-fill the validation and verification reports with a
template. He does this by selecting on the navigation tree a Requirement (of a Requirements
Container. The Validation report will then be filled with the template (for example, the list of all
Requirements. An example:

REQ-1 (id-1) Vehicle Speed (Approved)
- Derived specifications:

SPC-1 (id-2) Max speed (Approved)
SPC-2 (id-3) Torque (Approved)

- Justification: to be filled in.

Status Report: User can check at any moment the implementation and testing status of any project.
Edit entities in a table format

Import of version control system items as GW Entities Import of version control system items as GW
entities Integration with version control systems

GoedelWorks provides the user with an interface to exchange data with different version control
systems. The interface is achieved through Process Artefacts and/or Project Work Products. Content is
copied from the repository to GoedelWorks and kept local. Data is only updated on user request. The
user can also renew the contents of the file in the version control system by using GoedelWorks to
submit a new version.

Integration with software items: Project Work Products can be associated with software contents. A
proper source code editor is available and it supports many programming languages. Contents can be
taken from version control systems.

5.4.8. Administration

The administration panel is reserved for users with the necessary administration rights. Without going into
details, it offers several options to manage the portal and its users. We list them briefly:

e Changing the welcome message and welcome image.
e Import and exporting Processes and Projects or any Entity.

e Manage the uploaded files (attachments and images used in descriptive texts).

Altreonic NV From Deep Space To Deep Sea Page 57

Trustworthy Systems Engineering with GoedelWorks 3

e Setting default permissions for each user group (read, write and export rights).

e SMTP setting for notification mails;

e Viewing the error log;

e User management: personal contact details, group membership and session log.
e Managing and creating user groups;

e Cleaning up locked entities.

5.4.9. Glossary

The user can define his own glossary, currently regrouping the terms used at the level of the portal.

® O ® | [Goedeworks x |
<« C f [ocr-gw.altreonic.com/#entity=System) (o) 2
pps || GoedelWorks @ S Webmailz M Battery PWR [EJ Google }f Graphity B CADP [TASTE & PDF Books [BJ Aptinaimaging TR De Broglie-Bohm pi Internet Archive » [Other Bookmai
Glossary
Create ¥ Remove Refresh
11 - 20 of 36 items 10 | 2
Term Term (Plural) Acronym Description
R . = - cification in Goede! refinement and decomposition. This Step is successful if the Specification can be verified using a
Specification Specifications SPC . N -
ase. This means that st Procedure must be defined as well,
A Resource in Goede! or when available tion of the Acti performed in a Work P e. Typical
Resource Resource RES nd people. A distir nternal Resources. The latter fullfill 2
ed in 8 Activities, each executing 4 types pf phased /
Work Package Work Package WP e Designing, Developing, Veri g, Integration, Validation and Reviewing.
e vity phases are: Planning, Doing, Documenting r
! These Activities can execute concurrently but follow a partial order for Appro
Planning Plannings PL Planning clea how, when and given Activity h:
Edit Glossary Term X
Designing Designing DS
Term:| Work Package|
Development Development DV
peropmer pCopIne Term (Plural): Work Package
Verific Verification VE Acronym: WP
) = =
Testing Testing TST GOt BRB|BI US|E &=
Integration Inteq: n INT A Work Package in GoedelWorks is a structured collection of Activities clustered around a specific Process Step of cluster of related Items to be developed. In generic
terms it is composed in 8 Activities, each executing 4 types pf phased Actions.
Validation validation VA o The Activities are: Planning, Designing, D i ification, Testing, ion, Validation and
i e - Description:| The Activity phases are: Planning, Doing, Documenting and Confirmation.
These Activities can execute concurrently but follow a partial order for Approval.
| oK | | cancel |

Glossary screenshot

Altreonic NV From Deep Space To Deep Sea Page 58

Trustworthy Systems Engineering with GoedelWorks 3

5.5. A project example

5.5.1. The OpenComRTOS Qualification project

As an example we concisely present the Qualification Project of the OpenComRTOS kernel. This concerns
only the RTOS kernel of OpenComRTOS Designer, a modelling and programming environment for
programming parallel and concurrent applications, running on a system with potentially multiple processing
nodes. The design was originally done using formal methods.

At the time of starting the Project, the development was already completed (having reached v.1.6). The
RTOS was already in use as well as ported to several targets. The Qualification Project’s goal is to develop all
the evidence to support the qualification of the RTOS kernel itself. This evidence can then be used to assess
the certification for different standards (DO-178, IEC-26262, etc.) as the approach taken is generic and
independent of a specific domain. This is a valuable position as OpenComRTOS is a tool that can be used
across different domains without requiring changes.

5.5.2. Planning the Qualification Project

In this project the starting point was the existing source code v.1.6 of the OpenComRTOS kernel (with a
Processor specific part being the Freescale powerPC specific code). This was initially imported and updated
as the Project progressed. As the original kernel was formally developed, the available project data in the
form a book is referenced too. Furthermore, we list all the Resources that are needed. These include tools
such as the formal modelling tools, the development software, version management software, test chains,
etc. See the following figure displaying the PowerPC tools.

Entities Glossary Query Administration | Change Log
Entity Tree | Search Results 4 11780 x| id-1834 x | id-1835 x | id-1836 x| id-1837 x id-1850 x| id-1851 x| id-1852 x| id-1971 x| id-1972 x id-917 x
n ./ Navigation tree is locked WPPD-2 (id-917): Work Package Plan (Approved) | Changelog Review Comments Dependency Tree Precedence Tree

JEditMode (] Save [Access Control List [=/] Change Navigation Parent [£] Generate Doxygen Comment

~ Workflow
(= WP-1 (id-915): OpenComRTOS Qualification Package Activities (8)

’ State |Approved
(= (CNT-49) Planning Activities (4)

(= PLA-1 (id-916): Work Package Planning AL

(= WPPD-2 (id-917): Work Package Plan Name: Work Package Plan Development Status: Implemented
(= WPPR-3 (id-918): Work Package Planning Review Version: 1.0 Artefact type: Document
(= WPPRR-4 (id-919): Work Package Planning Review Report » Summary

+/ [(CNT-56) Design Activities (5)
» Release status
(= (CNT-50) Development Activities (5)

(= DVTP-1 (id-920): Development Plan + Description
(= DVT-2 (id-921): Development P& E D

(= DVTRP-3 (id-922): Development Report
. 1. Scope
(= DVTRV-4 (id-923): Development Review

(= DVTRR-5 (id-924): Development Review Report e . . N
The qualification is restricted to the following parts of OpenComRTOS Designer:
+ [(CNT-51) Verification Activities (5)
(= (CNT-52) Testing Activities (5) 1. The RTOS Kernel source code (v.1.6) and resulting binary libraries for a specific target processor.
(= TSTP-1 (1d-830): Testing Plan 2. Th_c Kernel/hardware HAL for a specific target processor.
3. This release concerns the RTOS v. 1.6 for the Freescale 7448 PowerPC.
+ () TST-2 (id-931): Testing (7)
+ [TSTRP-3 (id-932): Testing Report (8) Rationale: following items from OpenComRTS Designer were excluded for following reasons:

& TSTRV-4 (1d-833): Testing Review 1. Visual Designer with source code generator: this is a visual modelling tool used as a productivity and documentation
(= TSTRR-5 (id-934): Testing Review Report aid for the application developer. The software engineer can write the generated code without using the tools. Hence
+((CNT-53) Integration Activities (5) the tools are not needed for application development.

. 2. Event Tracer: this tool allows to visualise the execution trace of an application and is a supporting tool for finding
+/ [(ONT-54) Validation Activites (5) errors and profile the application. Hence the tools are not needed for application development.
. Task Level debugger: this tool allows to inspect an application at runtime and is a supporting tool for finding errors
=/ (CNT-46) Project Work Products (6) and profile the application. Hence the tools are not needed for application development.
4. T/O libraries: these tools are non-critical utility libraries and application specific.
5. Board Support Package: this is a target Board specific component that is to be redeveloped for every target system
and hence is in the realm of custom engineering.

+ [(CNT-55) Review Activities (7) 3

+ (3 WPT-1 (id-1019): Design Documents (22)
+ () WPT-2 (id-1021): Source Code (101)

+ (] WPT-3 (id-1020): Test Code (4)

£/ (7 WPT-4 (id-1121): Formal Models (1) 2. Objective
+ [WPT-5 (id-1853): Documentation (1)

+ [WPT-6 (id-1992): Build System (27) The objectives of this Qualification Package are:

Screenshot of the Work Package Plan Entity

Altreonic NV From Deep Space To Deep Sea Page 59

Trustworthy Systems Engineering with GoedelWorks 3

Next a decision was to be made on how to structure the Work Plan. Should we use several Work Packages?
Given that the input was existing and well tested source code, the development of the Qualification Package
came down to filling in the gaps, starting with the existing Requirements and Specifications and then
making sure that the traceability graph from Requirements to all Works Products is complete. This includes

the default and standardised Work Package Activities. It starts by defining a Work Package Plan whereby the
scope of the Project is clearly defined.

Entities Glossary Query Administration | Change Log
Entity Tree | Search Results 4 1780 x| id-1834 x| id-1835 x| id-1836 x| id-1837 x| id-1850 x| id-1851 x| id-1852 x| id-1971 x| id-1972 x
u J Navigation tree is locked RES-3 (id-1835): PowerPC toolchain (Approved) | Changelog Review Comments Dependency Tree Precedence Tree
& EditMode (] Save [Access Control List (=] Change Navigation Parent [5| Generate Doxygen Comment
T MY IO R LOOED (1) v Workflow
(= (CNT-4) PROJECTS (1) State |Approved
- = PRJ-1 (id-553): OpenComRTOS Qualification (2) + Content
(& (CNT-39) Deleted Entities Name: PowerPC toolchain Type: Tool
=/ & (CNT-40) Project Entities (8) Subtype: Project Origin: Not defined
(= (CNT-41) Project References (2)
Responsible: Bernhard Sputh Accountable: Not defined
(= REF-1 (id-1824): Formal development research project
o Consulted: Not defined Informed: Not defined
(= REF-2 (id-1825): Specifying Systems
+ [(CNT-42) Project Requirements (18) » Purpose

+ [(CNT-43) Project Specifications (20) + Description

L
(= RES-1 (id-1780): Tools for OpenComRTOS Qualification

. i The project will use the Code Sourcery G++ Lite distribution for PowerPC-EABI in version 2011.03-39 on
& RES2 (d-1834): TLA+ Tooks Ubuntu Linux 12,04 LTS.

- (= (CNT-44) Project Resources (10)

(= RES-3 (id-1835): PowerPC toolchain

(> RES-4 (id-1836): CTest Version obtained by the command "powerpc-eabi-gec --version":

. e . powerpc-eabi-gee (Sourcery G++ Lite 2011.03-39) 4.5.2

& RES-5 (d-1837): CDash Dashboard Server Copyright (C) 2010 Free Software Foundation, Inc.

(= RES-6 (i0-1850): Issue Tracking System This is free software; sec the source for copying conditions. There is NO

(= RES-7 (id-1851): Version Control System warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
(= RES-8 (id-1852): API Documentation Generator

The toolchain can be downloaded, free of charge, from the following links:

(= RES-9 (id-1971): Code Coverage Analysis - Windows: http://sourcery.mentor.com/public/gnu_toolchain/powerpc-cabi/freescale-2011.03-39-powerpe-
(= RES-10 (id-1972): PowerPC System cabi.exe
- Linux: http://sourcery.mentor.com/public/gnu_toolchain/powerpc-eabi/freescale-2011.03-39-powerpc-
= (CNT-45) Project Work Packages (1) cabi bin

+ [WP-1 (id-915): OpenComRTOS Qualification Package Activities (8)
+ [(CNT-46) Project Work Products (6) The toolchain also provides the newlib C-Standard Library (libc) in version 1.18.0.
(= (CNT-47) Issues
(= (CNT-48) Change Requests

Screenshot of the Resources used in the Qualification Package Project

The execution of the Qualification essentially proceeded as follows:
All references, resources, source code were imported via the SVN repository
The general Requirements are refined into Specifications, grouped into several classes:

e Functional Specifications: these are related to the behaviour of the RTOS in terms of services
offered to the application.

¢ Non-functional Specifications: these are related to derived properties (e.g. code-size).
e Interface Specifications: these are actually developed during the Design Activity.
¢ Implementation Specifications: these are actually developed during the Design Activity.

Note that an alternative Project organisation could have been to have a dedicated Work Package related to
the Design only. This is certainly a must for larger projects but it also indicates that the engineering
organisation has the freedom to decompose the Project in less or more Work Packages.

Altreonic NV From Deep Space To Deep Sea Page 60

Trustworthy Systems Engineering with GoedelWorks 3
5.5.3. The Planning Activities

The Work Package Activities are planned at the level of the Work Package itself as well as at the level of the
Activities. It is clear that at the WP level, the focus is on coordinating the work and the review activities.

5.5.4. Design Activities

The Design Activities produce a detailed Design Report that analyses the Requirements and Specifications
and the defines an architecture and detailed implementation that the Development Activity can use.

ece GoedelWorks x =
€« C M [) ocr-gw.altreonic.com/#entity=id-891 D=
i Apps [GoedeWorks @ X webmail2 M Battery PWR [EJ Google) Grapnity ¥ capp TASTE & PDF Books [B) Aptinaimaging TR De Broglie-Bohm pi Internet Archive » (L] Other Bookmarks

Entities Glossary Query Administration | Change Log

Entity Tree | Search Results System x| id-891 x
u J Navigation tree is locked WPT-1.1 (id-891): Generic Hub (Approved) | Changelog Review Comments Dependency Tree Precedence Tree
JEditMode [J] Save [5F Access Control List []] Change Navigation Parent =] Generate Doxygen Comment
+) (UNI1-4d) FToject WOorK rFackages (1) ~ Workflow
- (= (CNT-46) Project Work Products (6) State | Approved
(= WPT-1 (id-1019): Design Documents + Content
(= WPT-1.1 (id-891): Generic Hub Name: Generic Hub Development Status: Ready for Design
(= WPT-1.2 (id-898): Semaphore Hu Version: 1.0
(= WPT-1.3 (id-899): FIFO Hub Type: Model

(= WPT-1.4 (id-900): Resource Hub
(= WPT-1.5 (id-901): Memory Pool +
(= WPT-1.6 (id-902): Data Event Hu
(= WPT-1.7 (id-904): Blackboard Hu Description
(= WPT-1.8 (id-897): Event Hub

(= WPT-1.9 (id-905): Port Hub

(= WPT-1.10 (id-906): Packet Pool F
(= WPT-1.11 (id-907): Memory Bloci
(= WPT-1.12 (id-1781): Packets

Model type: Architectural

» Summary

pPE&RBE

(= WPT-1.13 (id-1782): Context Swil
Update Operation
(= WPT-1.14 (id-1783): Packet Rout

- = Synchronisati

(= WPT-1.15 (id-1784): Link Driver F
(= WPT-1.16 (id-1788): Tasks ST
(= WPT-1.17 (id-1789): Timers Predicate

(= WPT-1.18 (id-1790): Scheduler

(= WPT-1.19 (d-1791): Kernel
(= WPT-1.20 (id-1823): Priority Orde
=

WPT-1.21 (id-1832): Timer List Generic Hub (N-N)
(= WPT-1.22 (id-1833): Keyed List Figure 1. Generic Hub
() WPT-2 (id-1021): Source Code (101)
+ () WPT-3 (id-1020): Test Code (4) . .
+ () WPT-4 (id-1121): Formal Models (1) Generlc Hub Behav“)r
+ () WPT-5 (id-1853): Documentation (1)
+ () WPT-6 (id-1992): Build System (27)

(= (CNT-47) Issues Starting interactions:
SPC Service Request Types

Interactions can be seen as a three step process: starting the interaction, processing the request, concluding the interaction.

(= (CNT-48) Change Requests

Logged in as: eric.verhulst ¥ @ Logout

Screenshot of the Generic Hub Work Product Entity

5.5.5. Some statistics

To illustrate how extensive the evidence can be, we provide following statistical data:

o Number of lines of code (C and some assembler): 6500
o Number of Entities: 1320
o Number of Links: 1697 dependency links and 1221 structural links.

Project requirements: 18

Project Specifications: 311

Project Work Products: 541

Project Tests: 372

Number of pages in pdf snapshot: 1508
Attachements: 177

Altreonic NV From Deep Space To Deep Sea Page 61

Trustworthy Systems Engineering with GoedelWorks 3

6. Safety standards awareness in GoedelWorks

One of the issues in Systems engineering is that when Certification is a Requirement, many standards can be
applicable. Moreover, legal Requirements will differ from country to country and depend on the application
domain. In addition, standards are often either prescriptive but often outdated with respect to technology,
either goal oriented but leaving it up to the engineering organisation to follow a certifiable Process. This is a
bit strange as we have shown that Systems engineering is very universal.

The current situation is due to historical reasons and the state of the practice, including legal
preoccupations in relationship to liability issues. For the purpose of this discussion we will limit ourselves to
certifiable safety standards, applicable in the context of the automotive and machinery industry. These were
introduced when the complexity increase resulting from the introduction of programmable electronics
forced to think more systematically about how Systems with safety risks needed to be developed.

6.1. Safety standards for embedded reprogrammable electronics

The root of these standards is IEC-61508. It covers the complete safety life cycle, but needs interpretation
for a sector specific application. It originated in the Process control industry sector.

The safety life cycle has 16 phases which can be roughly divided into three groups: analysis, realisation
(development) and operation. All phases are concerned with the safe functioning of the System. Composed
of 7 Parts, Parts 1-3 contain the Requirements of the standard (normative), while 4-7 are guidelines and
examples for development and thus informative.
Central to the standard are the concepts of risk and safety function. The risk is seen as a statistical function
of the hazardous event and the event consequence severity. The risk is reduced to a tolerable level by
applying safety functions that may consist of electric, electronic or embedded software or other
technologies. While other technologies may be used in reducing the risk, IEC 61508 only considers the
electric, electronic and embedded software.
From this standard, extensions were developed for specific segments. For example:

e Automotive: coding standards like MISRA and later on ISO-26262

e Avionics: DO-178B/C and DO-254

e Railway: EN-50128

e Process Industry: IEC-61511

* Nuclear Power Plants: IEC 61513

e Machinery: IEC 62061

6.2. ASIL: A safety engineering process focused around 1SO-26262

While in principle GoedelWorks can support any type of Project and Process, its meta-Model was tuned for
Systems engineering Projects with a particular emphasis on safety critical Processes whereby the final
system or product will have to pass qualification or certification. As such, it has been used in the context of
the automotive domain, avionics, railway and space. Organisations can add and develop their own
Processes as well as import them (when made available in a proper format).

The first Process that was imported is the ASIL Process. The ASIL Process is a Process based on several safety
engineering standards, but with a focus on the automotive and machinery domain. It was developed by a
consortium of Flanders Drive members and combines elements from IEC 61508, IEC 62061, I1SO DIS 26262,
ISO 13849, ISO DIS 25119 and ISO 15998. These elements were obtained by dissecting these standards in

Altreonic NV From Deep Space To Deep Sea Page 62

Trustworthy Systems Engineering with GoedelWorks 3

semi-atomic requirement statements and combining them in a iterative V Process Model. It was enhanced
with templates for the Work Products and domain specific guidelines.

In total the ASIL Process identified about 3800 semi-atomic requirement statements and about 100 Process
Work Products, although this is a still an on-going effort. The ASIL Process also identifies 3 Process domains:

e Organisational Processes.
e Safety engineering and development Processes.
e Supportive Processes.

The ASIL Process Flow was imported by mapping all ASIL Entities onto GoedelWorks Entities and adding the
missing Entities, association and structural links. Examples are:

e Upon Work Package creation, a set of Tasks is added and structurally linked. The user can then
add more Tasks as needed.

e Specification and Requirements Entities are added for the Work Products.

For this reason the imported ASIL still needs to be completed to create an organisation or Project specific
Process. It is also likely that organisation specific Processes will need to be added. This is made possible
since each Entity in GoedelWorks can be directly edited in the portal.

6.3. Certification, qualification after validation

If a Systems Engineering Project reaches the Validation stage and the System is approved, why is
Certification still needed? Certification is first of all a legal Requirement. By definition, it is not good practice
if certification would be done by the same organisation that executed the Project. Even the best
organisation and best possible Process is still executed by humans and the goal of the Systems Engineering
Process is to maximise success in a cost-efficient way. Therefore, Certification has to be seen as an
additional re-validation step executed by an external auditing organisation. Certification does not attempt to
discredit the Project's results, it seeks confirmation that the Requirements, at least those relevant for the
Certification, were met and that there is evidence that everything was done that needed to be done.
Therefore, Certification is often based on examining and reviewing the "Artefacts", essentially the trail of
evidence generated during the Project, but it will also execute spot checks and anything else that might be
needed.

Producing the evidence is something that must be done during the Project when the work is actually done.
Examples are test reports, issue tracking records, meeting reports, etc. This work is what often scares
companies as it doesn't come for free. Following a Process cost extra time and Resources, but has also
benefits.

Altreonic NV From Deep Space To Deep Sea Page 63

Trustworthy Systems Engineering with GoedelWorks 3

GodelWorks

toplevel
Methods cosieptllal
Views %\ Table architecture

MetaModel |

Database engire
(encrypted?)

Checker
(1-N)
Codegens Compute-server
routing, (1-N) View generators

compilation W-engine-"""*) (1.N)

analysis ... Seeno?

Pty Y 0o "7 . Queries, pdf dcs,
e’ Seaae’ treeviews, ...

L4 .~

Local fileserver

.......

Session and
login handler
Cloud Server

(1/customer or /project)

A

VM
r\ GW Server and/or DB server
can be local

Traffic = only DB data, (encrypted?|

Request Results
4:,,

Traffic = Requests:
Add-Del-Mod Entities &
v Operations

protocols = Separate

Messages process
(Packet

Switching)

Client ONLY display or edit

%S DISPLAY and Ul
tandalone app

Text and or JS based?
graph edit

Client (1-N)

General set-up of the Goedel Works environment.

The Project will become more predictable and traceable, errors are detected in an early stage (when they
cost less to correct) and when considering life-cycle costs, it might turn out to be cost-efficient, especially if
support and maintenance costs are included. In the worst case, a serious issue can be discovered when the
System is in use and operational. Recalls to fix these issues can be very costly, not only financially but also in
reputation damage, etc. Therefore, Certification is a must but there is every interest to reduce the cost.

Note also that the term Qualification is also often used. It is very much like Certification with the difference
that there are often there no legal consequences and it is the term often used to indicate fitness for use of a
component or tool. Hence, it is often the integrator that is responsible for assuring that a tool or component
is of sufficient quality and can be trusted to be used in the context of his Project.

The GoedelWorks environment contributes to this on several levels by automating the engineering Process:
e The organisation uses a standards-aware Process.
e The approval Process reduces rework and double work.
¢ The certification artefacts are generated during development.

e Organisations can "pre-certify" by following the Process.

Altreonic NV From Deep Space To Deep Sea Page 64

Trustworthy Systems Engineering with GoedelWorks 3

The cost of running a Systems engineering Project will also be reduced because the GoedelWorks server
keeps track in a central repository of all changes and dependencies. In addition, people all over the world
can collaborate because all data is centrally located and edited.

6.4. Organisation specific instances of GoedelWorks

The GoedelWorks environment is a very flexible tool for Systems engineering. It provides the following
functionalities for a distributed team:

e Project support from Requirements unto release for production (no need to use the ASIL
Project Flow).

* Process support from Requirements unto release for production (with ASIL Project Flow).
e Customisation and completion of the ASIL Flow, depending on the industry.

e Developing new, domain specific Process Flows.

e Adding organisation specific Processes.

e Creating a snapshot of the Project in html or pdf format, i.e. export the project or process
contents in HTML or PDF formats, as well as other formats such as a self-contained archive
(with attachments and source code repositories).

e Generating dependency and precedence trees.

e Import and exporting projects, processes or any other entity type. Entities from a given portal
can be reused on another portal through this interface.

e User management.

e Knowledge management.

7. References

[1] Eric Verhulst, Bernhard Sputh, Jose Luis de la Vara, Vincenzo de Florio, ARRL: a novel criterion for
Composable Safety and Systems Engineering. SafeComp/SASSUR workshop. Toulouse, September 2013.

[2] Eric Verhulst, Bernhard Sputh, Jose Luis de la Vara, Vincenzo de Florio. From Safety Integrity Level to
Assured Reliability and Resilience Level for composable safety critical systems, ICSSEA, Paris, Nov. 2013.

[3] Eric Verhulst, Bernhard Sputh. ARRL, a criterion for compositional safety and systems engineering. A
normative approach to specifying components. IEEE ISRRE2013, Pasadena, November 2013.

[4] http://www.iec.ch/functionalsafety/. Functional safety of electrical / electronic / programmable
electronic safety-related systems (IEC 61508) (2005)

[5]http://www.altreonic.com/sites/default/files/Altreonic_ ARRL_DRAFT_WIP011113.pdf.
From Safety Integrity Level to Assured Reliability and Resilience Level for Compositional Safety Critical
Systems (internal white paper)

[6] http://www.rtca.org
[7] IEC: ISO: International Standard Road vehicles - Functional safety - ISO/DIS 26262 (2011)
[8] BAA: Aircraft Crashes Record Office. http://baaa-acro.com/index.html (2013)

[9] World Health Organisation: WHO global status report on road safety 2013: supporting a decade of
action. Technical Report (2013)

[10] Antifragile. Things that gain from disorder. Nassim Nicholas Taleb. Random House (Nov. 2012)

[11] http://ec.europa.eu/environment/noise/home.htm

Altreonic NV From Deep Space To Deep Sea Page 65

http://ec.europa.eu/environment/noise/home.htm

Trustworthy Systems Engineering with GoedelWorks 3
8. ANNEXES

8.1. Entities supported in GoedelWorks 3

Altreonic NV From Deep Space To Deep Sea Page 66

Entities and their acronyms in GoedelWorks

Trustworthy Systems Engineering with GoedelWorks 3

SYS System
PRO Process
PRJ Project
REF Project Reference
REQ Project Requirement
SPC Project Specification
RES Project Resource
WP Project Work Package
WPT Project Work Product
ISS Issue
CHR Change Request
PLA Work Package Planning
WPPD Work Package Plan
WPPR Work Package Planning Review
WPPRR Work Package Planning Review Report
WPR Work Package Review
DSP Design Plan
DS Design
DSRP Design Report
DSRV Design Review
DSRR Design Review Report
DVTP Development Plan
DVT Development
DVTRP Development Report
DVTRV Development Review
DVTRR Development Review Report
VETP Verification Plan
VET Verification
VETRP Verification Report
VETRV Verification Review
VETRR Verification Review Report
TSTP Testing Plan
TST Testing
TSTRP Testing Report
TSTRV Testing Review
TSTRR Testing Review Report
Altreonic NV From Deep Space To Deep Sea

Page 67

Trustworthy Systems Engineering with GoedelWorks 3

INTP Integration Plan
INT Integration
INTRP Integration Report
INTRV Integration Review
INTRR Integration Review Report
VALP Validation Plan
VAL Validation
VALRP Validation Report
VALRV Validation Review
VALRR Validation Review Report
RVWP Review Plan
RVW Review
RVWRP Review Report
RVWCNF Confirmation Review
RVWCRR Confirmation Review Report
WPRR Work Package Review Report
REF Process Reference
REQ Process Requirement
SPC Process Specification
RES Process Resource
STP Process Step
ART Process Artefact
Altreonic NV From Deep Space To Deep Sea

Page 68

8.2.

Trustworthy Systems Engineering with GoedelWorks 3

Entities defined in the ASIL Process

This annex lists an extract of the key Entities identified by the ASIL project in the analysed safety standards.
This is used as an example Process flow whereby a user can define his own Process or import another One.

For more detailed information, please contact us at: goedelseries (@) altreonic.com

1. ASIL Roles

1.1. Configuration manager

1.2. Hardware architect

1.3. Hardware developer

1.4. Hardware integrator

1.5. Project manager

1.6. Quality Assurance manager

1.7. Safety manager

1.8. Software architect

1.9. Software developer

1.10. Software integrator

1.11. Stakeholder, defined by impact analysis
1.12. Supply manager

1.13. System Architect

1.14. System Integrator

1.15. Test engineer

1.16. Validation engineer

1.17. Verification engineerList of ASIL Roles
2. ASIL Work Products grouped into categories
2.1. Change management (3)

2.2. Configuration management (2)

2.3. Decommission and disposal (2)

2.4. Documentation (2)

2.5. Hardware related (10)

2.6. Installation and commissioning (8)
2.7. Integration and testing (6)

2.8. Project planning (2)

2.9. Production (4)

2.10. Qualification (4)

2.11. Safety related (18)

2.12. Software related (18)

2.13. Supplier related (12)

2.14. System related (4)

2.15. Validation (2)

2.16. Verification (3)

Altreonic NV From Deep Space To Deep Sea

Page 69

http://altreonic.com

Trustworthy Systems Engineering with GoedelWorks 3

3. ASIL Work Packages grouped into related steps
3.1. Organisational Processes (19)

3.2. Supporting Processes (75)

3.3. Document management (3)

3.4. Supply agreement management (24)

3.5. Configuration management (18)

3.6. Change management (9)

3.7. Verification (8)

3.8. Confirmation measures (6)

3.9. SIMPLAR Constraints (19)

3.10. Decomposition of safety integrity levels (1)
3.11. Criteria for coexistence (1)

3.12. Safety analyses (8)

3.13. Analysis of dependent failures (3)

3.14. Qualification of hardware components (3)
3.15. Qualification of software components (3)

3.16. Qualification of software tools (6)

3.17. Provenin use argument (5)

3.18. System Safety & Engineering Development Processes (261)
3.19. Definition scope of Project (15)

3.20. Definition methodology of HARA and safety goals (6)
3.21. Execution of HARA and safety goals (37)

3.22. Functional safety concept (4)

3.23. System development planning (4)

3.24. System design (20)

3.25. Hardware development planning (4)

3.26. Hardware design and development (18)

3.27. Software development planning (4)

3.28. Software design and development (11)

3.29. Software unit testing (4)

3.30. Software integration and testing (5)

3.31. Hardware integration and testing (5)

3.32. Hardware software integration and testing (4)
3.33. System and vehicle/machine integration and testing (4)
3.34. Safety validation (5)

3.35. Prototype installation (4)

3.36. Production (6)

3.37. Installation and commissioning (3)

3.38. Operation, maintenance and repair (10)

3.39. Decommissioning or disposal (7)

Altreonic NV From Deep Space To Deep Sea

Trustworthy Systems Engineering with GoedelWorks 3

Acknowledgements

While GoedelWorks is a development of Altreonic, part of the theoretical work was done in the following
projects:
e EVOLVE (Evolutionary Validation, Verification and Certification). This is an EU ITEA project executed
from 2007 till 2011 with Open License Society (Altreonic's R&D partner).
o ASIL (Automotive Safety Integrity Level). This is a Flanders' Drive project executed from 2008 till 2011,
with support from IWT, the Flemish Institute of Science and Technology.
e OPENCOSS (Open Platform for EvolutioNary Certification Of Safety-critical Systems (automotive,
railway, avionics). An FP7 IP EU project that researches way to reduce the certification costs across
different domains (mainly automotive, aviation and railway)

Altreonic NV From Deep Space To Deep Sea Page 71

